a2 United States Patent

US009443192B1

10) Patent No.: US 9,443,192 B1

Cosic 45) Date of Patent: Sep. 13, 2016
(54) UNIVERSAL ARTIFICIAL INTELLIGENCE 7,017,153 B2 3/2006 Gouriou et al.
ENGINE FOR AUTONOMOUS COMPUTING 7052.271 B2 52006 Kellman
DEVICES AND SOFTWARE APPLICATIONS 7:117:225 B2 10/2006 Cosic
7,222,127 Bl 5/2007 Bem et al.
(71) Applicant: Jasmin Cosic, Miami, FL. (US) 7,240,335 B2 7/2007 Angel et al.
7,249,349 B2 7/2007 Hundt et al.
. : ; P 7,424,705 B2 9/2008 Lewis et al.
(72) Inventor: Jasmin Cosic, Miami, FL. (US) 7478371 B 15009 Gove
(*) Notice: Subject. to any disclaimer,. the term of this ;Z;‘gi‘ﬁ?g E% égg?g Xf;g(ittagf thy
patent is extended or adjusted under 35 7,765,537 B2 7/2010 Havin et al.
U.S.C. 154(b) by 0 days. 7,797,259 B2 9/2010 Jiang et al.
7,840,060 B2 11/2010 Podilchuk
. 7,925,984 B2 4/2011 Awe et al.
(21) Appl. No.: 14/839,982 7987.144 Bl 7/2011 Drissi et al.
. 8,005,828 B2 8/2011 Buchner et al.
(22) Filed: Aug. 30, 2015 8,019,699 B2 9/2011 Baxter
8,078,556 B2 12/2011 Adi et al.
(51) Int. CL 8,090,669 B2 1/2012 Shahani et al.
GO6F 15/18 (2006.01) 8,137,112 B2 3/2012 Woolf et al.
8,166,463 B2 4/2012 Gill et al.
GO6N 3/08 (2006.01) 8,195,674 Bl 6/2012 Bem et al.
GOG6N 3/02 (2006.01) $196.119 B2 6/2012 Gill et al.
(52) US. CL 8,244,730 B2 8/2012 Gupta
CPCcccee. GOG6N 3/088 (2013.01); GO6N 3/02

(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

(Continued)
OTHER PUBLICATIONS

Chen et al. Case-Based Reasoning System and Artificial Neural
Networks: A Review Neural Comput & Applic (2001)10: pp.
264-276.*

(Continued)

Primary Examiner — Li-Wu Chang

4,370,707 A 1/1983 Phillips et al.

4,730,315 A 3/1988 Saito et al.

4,860,203 A 8/1989 Corrigan et al. 7 ABSTRACT

5,602,982 A 2/1997 Judd et al. Aspects of the disclosure generally relate to computing
g’gég’%g? ﬁ %;%888 giﬁonef;fl' devices and may be generally directed to devices, systems,
6.106.299 A /2000 Ackei]mann'et al. methods, and/or applications for learning the operation of a
6,126,330 A 10/2000 Knight computing device or software application, storing this
6,314,558 B1 11/2001 Angel et al. knowledge in a knowledgebase, neural network, or other
g’%‘g’ggé g% 1 41‘; 3882 én_ge_l et 2} repository, and enabling autonomous operation of the com-
6735632 Bl 57004 KEZ?; i:tt al puting device or software application with partial, minimal,
6,801,912 B2 10/2004 Moskowitz et al. Or no user input.

6,915,105 B2 7/2005 Masuda

6,973,446 B2 12/2005 Mamitsuka et al. 20 Claims, 64 Drawing Sheets

Decisicn-making Unit
Operation List Neural Network
[Operazonn+m] [Operationn+] [Operationn+mi {Operation n+mj Layer n+m
H H H H H 354%?
Operation n#2| | Operationn+Z| |Operationn+2} {Cperation n+2} | Operaticn n+2) Layer n+2
— LL\—‘ L/% L/I‘7,_\i Ry
e 7 L e 854d
S e o AN
[Operationn+1] [Operationn+1] [Cperationri+1] [Cperationn+1] [Operatien n+1] [Operation n+1] Layer atd
e - = -
610cc ~— \\\ . > ‘///
Criizian, Gooraienn | [Gpater 1] ol Laer n
~ L/—/T Loions | L}%—‘U‘L—‘l p
610ch // - g 854¢
o
[Cperation n-1 | | e Operationn-1] [Operationi-1} {Operation n-1 | {Operation n-1 Layer n1
610ca Sy — . 854b
N P
Craionnz] A oerationn-2] {Cperation n-2 |-—-810ba L/ayer 2
b 3 : 854a 3
[Gperation n-m] | | [Operation rm] [Coeration rem! {Gperation n-m} {Operatien n-m] Layer n-m
h
i
!
i
|
|

510 1010 850 540

US 9,443,192 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,251,704 B2 8/2012 Woolf et al.

8,266,608 B2 9/2012 Hecht et al.

8,335,805 B2 12/2012 Cosic

8,364,612 B2 1/2013 Van Gael et al.

8,386,401 B2 2/2013 Virkar et al.

8,397,227 B2 3/2013 Fan et al.

8,417,740 B2 4/2013 Cosic

8,464,225 B2 6/2013 Greifeneder

8,549,359 B2 10/2013 Zheng

8,572,035 B2 10/2013 Cosic

8,589,414 B2 11/2013 Waite et al.

8,655,260 B2 2/2014 Yueh et al.

8,655,900 B2 2/2014 Cosic

8,667,472 Bl 3/2014 Molinari

8,996,432 B1* 3/2015 Fu ..ccooevvrerirnnnn GO6N 99/005
280/250.1

9,047,324 B2
2003/0065662 Al
2004/0117771 Al
2005/0149517 Al
2005/0149542 Al
2005/0289105 Al
2006/0190930 Al
2007/0006159 Al
2008/0254429 Al
2008/0281764 Al
2010/0023541 Al
2010/0082536 Al
2010/0138370 Al
2011/0218672 Al

6/2015 Cosic

4/2003 Cosic

6/2004 Venkatapathy

7/2005 Cosic

7/2005 Cosic
12/2005 Cosic

8/2006 Hecht et al.

1/2007 Hecht et al.
10/2008 Woolf et al.
11/2008 Baxter

1/2010 Cosic

4/2010 Cosic

6/2010 Wu et al.

9/2011 Maisonnier et al.
2012/0150773 Al 6/2012 DiCorpo et al.
2012/0167057 Al 6/2012 Schmich et al.
2012/0290347 Al* 11/2012 Elazouni G06Q 10/06313

705/7.12

2013/0218932 Al
2013/0226974 Al 8/2013 Cosic
2013/0238533 Al 9/2013 Virkar et al.
2015/0324685 Al* 11/2015 Bohnccccevennnn GO6N 3/04
706/15

8/2013 Cosic

OTHER PUBLICATIONS

About Event Tracing, retrieved from <URL: http://msdn.microsoft.
com/en-us/library/aa363668(d=default,|=en-us,v=vs.85).aspx> on
Jan. 12, 2014, 2 pages.

Add dynamic Java code to your application, retrieved from <URL:
http://www.javaworld.com/article/207 1777/design-patterns/add-
dynamic-java-code-to-your-application. html> on May 13, 2014, 6
pages.

BCEL, retrieved from <URL: http://commons.apache.org> on May
13, 2014, 2 pages.

Arttificial intelligence, retrieved from <URL: http://wikipedia.com>
on May 21, 2014, 28 pages.

Arttificial neural network, retrieved from <URL: http://wikipedia.
com> on May 21, 2014, 12 pages.

Branch (computer science), retrieved from <URL: http://wikipedia.
com> on May 6, 2014, 2 pages.

Branch trace, retrieved from <URL: http://wikipedia.com> on May
28, 2014, 2 pages.

C Function Call Conventions and the Stack, retrieved from <URL:
http://www.csee.umbc.edu/~chang/cs313.s02/stack.shtml> on Jan.
11, 2014, 4 pages.

Call stack, retrieved from <URL: http://wikipedia.com> on Jan. 11,
2014, 5 pages.

Program compilation and execution flow, retrieved from <URL:
http://cs.stackexchange.com/questions/6 1 87/program-compilation-
and-execution-flow> on Jan. 9, 2014, 2 pages.

Control unit, retrieved from <URL: http://wikipedia.com> on May
25, 2014, 2 pages.

Create dynamic applications with javax.tools, retrieved from
<URL: http://www.ibm.com/developerworks/library/j-jcomp/> on
May 13, 2014, 11 pages.

Creating a Debugging and Profiling Agent with JVMTI, retrieved
from <URL: http://www.oracle.com/technetwork/articles/java/
jvmti-136367 html> on Jan. 11, 2014, 18 pages.

Decision tree learning, retrieved from <URL: http://wikipedia.com>
on Jun. 24, 2014, 5 pages.

Dynamic Bytecode Instrumentation, retrieved from <URL: http://
www.drdobbs.com/tools/dynamic-bytecode-instrumentation/
184406433> on Apr. 26, 2014, 6 pages.

Dynamic programming language, retrieved from <URL: http://
wikipedia.com> on May 7, 2014, 4 pages.

Dynamic recompilation, retrieved from <URL: http://wikipedia.
com> on May 19, 2014, 4 pages.

Eval(), retrieved from <URL: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global__Objects/eval> on May 7,
2014, 13 pages.

Function, retrieved from <URL: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Function> on
May 7, 2014, 11 pages.

FunctionEnter2 Function, retrieved from <URL: https://msdn.
microsoft.com/en-us/library/aa964981(d=default,I=en-us,v=vs.
110).aspx> on Mar. 19, 2014, 2 pages.

Functionl.eave? Function, retrieved from <URL: https://msdn.
microsoft.com/en-us/library/aa964942(d=default,I=en-us,v=vs.
110).aspx> on Mar. 19, 2014, 1 pages.

Heuristic, retrieved from <URL: http://wikipedia.com> on May 22,
2014, 5 pages.

How to: Configure Trace Switches, retrieved from <URL: https://
msdn.microsoft.com/en-us/library/vstudio/
t06xyy08(d=default,l=en-us,v=vs.100).aspx> on Mar. 19, 2014, 3
pages.

Indirect branch, retrieved from <URL: http://wikipedia.com> on
May 5, 2014, 1 pages.

Instruction cycle, retrieved from <URL: http://wikipedia.com> on
Apr. 30, 2014, 2 pages.

Instruction set, retrieved from <URL: http://wikipedia.com> on Apr.
29, 2014, 6 pages.

Interrupt, retrieved from <URL: http://wikipedia.com> on May 15,
2014, 5 pages.

Introduction to Instrumentation and Tracing, retrieved from <URL:
http://msdn.microsoft.com/en-us/library/aa983649(d=default,l=en-
us,v=vs.71).aspx> on Jan. 10, 2014, 2 pages.

Java bytecode, retrieved from <URL: http://wikipedia.com> on
May 27, 2014, 4 pages.

Package java.util logging, retrieved from <URL: http://docs.oracle.
com/javase/1.5.0/docs/api/java/util/logging/package-summary.
html> on Mar. 19, 2014, 2 pages.

Javac—Java programming language compiler, retrieved from
<URL: http://docs.oracle.com/javase/7/docs/technotes/tools/win-
dows/javac.html> on May 13, 2014, 12 pages.

Interface JavaCompiler, retrieved from <URL: http://wikipedia.
com> on May 13, 2014, 4 pages.

Javassist, retrieved from <URL: http://wikipedia.com> on May 13,
2014, 2 pages.

Just-in-time compilation, retrieved from <URL: http://wikipedia.
com> on May 19, 2014, 5 pages.

JVM Tool Interface, retrieved from <URL: http://docs.oracle.com/
javase/7/docs/platform/jvmti/jvmti html> on Apr. 26, 2014, 127
pages.

Machine code, retrieved from <URL: http://wikipedia.com> on Apr.
30, 2014, 3 pages.

Metaprogramming, retrieved from <URL: http://wikipedia.com> on
May 8, 2014, 3 pages.

Microsoft.VisualBasic.Logging Namespace, retrieved from <URL:
http://msdn.microsoft.com/en-us/library/ms128122(d=default,l=en-
us,v=vs.110).aspx> on Jan. 13, 2014, 1 pages.

Pin (computer program), retrieved from <URL: http://wikipedia.
com> on May 6, 2014, 3 pages.

Processor register, retrieved from <URL: http://wikipedia.com> on
Apr. 29, 2014, 4 pages.

Profiling (computer programming), retrieved from <URL: http://
wikipedia.com> on Jan. 10, 2014, 4 pages.

US 9,443,192 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Profiling Overview, retrieved from <URL: http://msdn.microsoft.
com/en-us/library/bb384493(d=default,|=en-us,v=vs.110).aspx> on
Jan. 12, 2014, 6 pages.

Program counter, retrieved from <URL: http://wikipedia.com> on
Apr. 24, 2014, 2 pages.

Ptrace, retrieved from <URL: http://wikipedia.com> on Apr. 24,
2014, 2 pages.

Reflection (computer programming), retrieved from <URL: http://
wikipedia.com> on May 7, 2014, 5 pages.

Class Runtime, retrieved from <URL: http://docs.oracle.com/
javase/7/docs/api/java/lang/Runtime.html> on Jan. 10, 2014, 10
pages.

Self-modifying code, retrieved from <URL: http://wikipedia.com>
on Jan. 12, 2014, 6 pages.

Subjective logic, retrieved from <URL: http://wikipedia.com> on
May 22, 2014, 5 pages.

System.CodeDom.Compiler Namespace, retrieved from <URL:
http://msdn.microsoft.com/en-us/library/z6b99ydt(d=default,|=en-
us,v=vs.110),aspx> on May 13, 2014, 2 pages.

System.Reflection. Emit Namespace, retrieved from <URL: http://
msdn.microsoft.com/en-us/library/xdSfw18y(d=default,l=en-
us,v=vs.110).aspx> on May 13, 2014, 2 pages.

Tracing (software), retrieved from <URL: http://wikipedia.com> on
Jan. 10, 2014, 3 pages.

Tree (data structure), retrieved from <URL: http://wikipedia.com>
on Jun. 24, 2014, 6 pages.

PTRACE(2), retrieved from <URL: http://unixhelp.ed.ac.uk/CGI/
man-cgi?ptrace> on Mar. 19, 2014, 5 pages.

Wevtutil, retrieved from <URL: http://technet.microsoft.com/en-us/
library/cc732848(d=default,|=en-us,v=ws.11).aspx> on Apr. 28,
2014, 5 pages.

Intel Processor Trace, retrieved from <URL: https://software.intel.
com/en-us/blogs/2013/09/18/processor-tracing> on Apr. 28,2014, 3
pages.

Younghoon Jung, Java Dynamics Reflection and a lot more, Oct. 10,
2012, 55 pages, Columbia University.

Amitabh Srivastava, Alan Eustace, Atom A System for Building
Customized Program Analysis Tools, May 3, 2004, 12 pages.
Mathew Smithson, Kapil Anand, Aparna Kotha, Khaled Elwazeer,
Nathan Giles, Rajeev Barua, Binary Rewriting without Relocation
Information, Nov. 10, 2010, 11 pages, University of Maryland.
Marek Olszewski, Keir Mierte, Adam Czajkowski, Angela Demle
Brown, JIT Instrumentation—A Novel Approach to Dynamically
Instrument Operating Systems, Feb. 12, 2007, 14 pages, University
of Toronto.

John J. Grefenstette, Connie Loggia Ramsey, Alan C. Schultz,
Learning Sequential Decision Rules Using Simulation Models and
Competition, 1990, Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC, 27
pages.

Alan C. Schultz, John J. Grefenstette, Using a Genetic Algorithm to
Learn Behaviors for Autonomous Vehicles, 1992, Navy Center for
Applied Research in Artificial Intelligence, Naval Research Labo-
ratory, Washington, DC, 12 pages.

* cited by examiner

US 9,443,192 Bl

Sheet 1 of 64

Sep. 13, 2016

U.S. Patent

POl
BoBLIOW
BlLoRU-IBIING aamag Aeidsin
&7 ¥4
soBpioy Aowepy)
HIOMIBN sAgBLIgY AUET Oft |
5% 13 2
r48 €l
g
, Alowsiy uiepy a8 Ofl
aoedg ejeq |
i oL a5 ,mm _‘
. alRAyOg | Wogd Alowspy | o4 O Mod OA
/
\] 3ORD T 108880014 LB
81 \; 50
(118 i i
sbrio)g
Ly -
7 A

//I 04 @oneq Bugnduwion

US 9,443,192 B1

Sheet 2 of 64

Sep. 13, 2016

Z°Old
sbeioig i~ mN
R\ k_A
aoBpa|
Rsowep SlUOBI-UBIING |-
i Zhk
yn supUal .
souebifielu] == uogesupow | _ | o —= uogeoyddy arergjog
[eroyy pue uopisinboy 7 m
/ i
0z
0l Ok
VN
\.\\ M_.
1 feydsig — #
iz
soreq Bugndwion

U.S. Patent

0L

U.S. Patent Sep. 13,2016 Sheet 3 of 64 US 9,443,192 B1

201

Source Code

202\ ,
¥
Compiler, Interprater, or Other Translator

203\ ;

Linker

204 :
Loader

205,

N In-memory Machine Code

FIG. 3

U.S. Patent Sep. 13, 2016

120

Sheet 4 of 64

US 9,443,192 B1

Software Application

100

UAIE 10

Acquisition and Modification Interface

111

12

Instruction Acqu

isition Unit

Application Modification Unit

|

130

Adificial Intelligence Unit

FIG. 4

US 9,443,192 B1

Sheet 5 of 64

Sep. 13, 2016

U.S. Patent

§ "Old 4%
Alows
" W
1424
fey eysibay
ele Ziz] A
Hun 2o
ooy J8p02a(] UORONIISU] Jaysibay uononsu Jgjunon weiboid
Gz
J085900id
_* | |
Avn

0oL

U.S. Patent Sep. 13,2016 Sheet 6 of 64 US 9,443,192 B1

110
Acquisition and Modification Interface R
/1 30

Artificial Intelligence Unit |
50 {

Command Disassembler '
510, y

' Operation List !

52(\

Knowledgebase S { Knowledge Structuring Unit |

54 |
I
—— Decision-making Unit I

55

Confirmation Unit E«

530

S
ANV Ve

Command Assembler E

FIG. 6

US 9,443,192 B1

Sheet 7 of 64

Sep. 13, 2016

U.S. Patent

L°Old

0e9 0i9 4]

e

-

hmgmwm.@wcm L [cimpuried| | pieisweied| [ciolawried ||z sisweled)

SR ———

LgiawesR4l) | Luoiound
i

couﬁano

]

Ao maueled piejsweled "cimaueed" ziosweled " isauweled) uonound

188 UORORISY|

003

Jojquassesy] puBLLLOY

005

US 9,443,192 B1

Sheet 8 of 64

Sep. 13, 2016

U.S. Patent

8 "Old

059 0Lg

g9

NS 200°100 [A8 0¥ | 7170 1120

L
A

|

ABYIQHO | 22 02190 710 AN LA Liokesadgy 1100 Fuapia |20 "L [g | 20 103 | Log1as]
]

L

uonessdo

S 7100 100'A8 d0Y™ 7100 '100'AB HIAYO" T ZieA Zi0lisd0) 210D ONY MieA LIoteiRd0 LoD TuIHM 2L FHal wod" ZioD ‘Hen'10313s'

188 UORONASY|

009

JBjquiessesi(] pUBWWo?

00¢%

US 9,443,192 B1

Sheet 9 of 64

Sep. 13, 2016

U.S. Patent

6 "Old

0£9 \Em 0z9
.,\\\ .\..\\
. Z
rldwels swij anjea |l |1SU0DI
o |

ugieedo

enjen 1suool

J6§ uoponysyj

009
JojUassEsi(] puBlLWOD
005

US 9,443,192 B1

Sheet 10 of 64

Sep. 13, 2016

U.S. Patent

0L "Old

oo 019 029
/.

s

- |dwejs awil z1eisiBay|Lie)siBay |p

—+T
©

p- E—

uoiaiedo

zleisibay Lieisibay ppe

18g uogInnsy)

009

JBifiBsses|(puelllWo]

00§

US 9,443,192 B1

Sheet 11 of 64

Sep. 13, 2016

U.S. Patent

I E

1] L9 0Z9

" |dweyg swiI1 00000 +00000|04100/01000 |10000/000000
I A R R R

ugneiedo

'000001 00000'0L100°01000"10000"000000

185 UOjIoMISu|

009

lsjquiassesi(q puglyLoD

008

US 9,443,192 B1

Sheet 12 of 64

Sep. 13, 2016

U.S. Patent

¢l "old

dweig awij (| cieiswered| visiolrled| [cle1eweied [|Zio10weled | || Js1awesed) Nuonaun4
Ukl J8§ uoponsujuoneIadg

dwglg awi ||| ||ie10BiRd]) |GUOROUNY
U 185 uoRonRsujuogeled)

dweis swi (1 |'|zis1Weled| ||ewweled|) [puoiound
£-U 188 uopsnusujucgeedn

duweis swi[(| |'|cieieuiried||zieeueied| ||/a1oWelRd)) [cUOIOUN 4
Z-U Jes uopongsujuoneisdg

dweig awif|(| | ||sewweried])jzuonound
|=U 185 UoRIRIISUj/UCRRIRA()

dweig awiy (|| ieisweed|'|cioiswried||zieeWried| ||/a10WelRd)) || Uonoun
U Jog uoponsuoeIsd)
1811 185 uojanysujuopeledo

0£9 019 0Z9 015

U.S. Patent Sep. 13, 2016 Sheet 13 of 64 US 9,443,192 B1

520
Knowledge Stucturing Unit
800
510
900
QOperation List Knowledge Cell

i iKnowladge Cell ID
: Operation n+m
|

i

W} —4{ Cperation n+Z
IM =~ Gperalion n+1
[Ogeration n-2 | —{Cperation n 610
W = Cperation n-1
W =~ Operation n-2

°
°
-

IOéeraiion a-m ! =t0peration n-m

i

i

B

|
|
|
y

FIG. 13

US 9,443,192 B1

Sheet 14 of 64

Sep. 13, 2016

U.S. Patent

L "Oid

ti-U Udileisa)y

Z-U LonRIBtD
L-4 uohelangy

U uopeledy

L+u Lopeiadn

g+t UCHRIBED

LR

- uopeiadp)

| wuiiogerdp)

7-u onrisdp

7-u %_Emaom

] mo_ﬁmaow

|-u co;maaom

u uofjesadsy

U uopesadp)

[ao:.&maom

14U uojessdp)

74 ao_wmbmaam

F+U uojeiado)

0k9 |\l UoEsRag [sl Logesedp) [W vopessdQ)]
[Gi 190 aBpaymoty i 180 sbpsimetiy] ki 0 ebpemony]
P
o6 L4180 abpsprouy 7 o0 abpspmouy) } fien abpeymouy]
eseqafpeimouy
008 11584

US 9,443,192 B1

Sheet 15 of 64

Sep. 13, 2016

U.S. Patent

008 .
\Www 212" GL "9id
| wuuojendims| w-uucendy) [uuuopend)smgy| Ww-uucjendg] [uwruuopesdlsmey| W-uuojeidQ)
| zuuonesdlsegs| z-uuojesadp] [zuuonesdpieest| 7 ORI [zuuonesdpleeay| 7 UOHRIBAG]
_ 1-U co_um;maow‘. _ L-U co_wgmao_ _ 1-U :o:m_mmov.(‘_ |-U co_wmaaom _ 1-U co__m_mn_cm‘. “_ 1-U co:m_maom
_ u co_.ﬁ_maoT. _ U co_Eon_ _ u cozm_wgcm‘.(‘_ U :o_a_maom _ u co_,m_mgom‘_. ‘_ U :o:m_maom
Z+U uonRIado % Z+U uoneIsd(y
L N N) 4
wrU ucijeradgy
11 15D abpay
u 8D abpajmous Z 110 abipajmoun | 180 sfipajmouy
aseqobpajmouy 1817 uoneledp esegabpajmoun 1817 uoneRdQ 8segebpajmouy] 1517 UoneIsdQ
/u uosuedwod Aejwis fequeisqng N g uosyedwo) AEuNS [BjuBlSqRg | uospedwog AUBUNS [BjUBISRG
/ N
/ oLok 015
0gs

N Supeu-uoISIag

ove

US 9,443,192 B1

Sheet 16 of 64

Sep. 13, 2016

U.S. Patent

g9L "9l
ov9 0cg mwm 029
TXapU) mugmﬁogg_ QEEw I A “Ilglsiouieled “Emwmﬁﬂmm ‘leisisuiBied h Zislaweled| [Lieleweied V Luonoun4
uopelsd)
Yol "Oid 0v9
4 0l {0l i 01 6 0l 3 0l 0l 0 0l 01 al
" dweig awi | (1" GiejoWelRd|’ pielsliBled|‘ cielawiied)‘ gisjeleied * | isjeweied)) | uojound
uoyesadp
09 019 028

US 9,443,192 B1

Sheet 17 of 64

Sep. 13, 2016

U.S. Patent

059 0£9

8.1 'Oid

0i8

0Z9

Z

| xapu) 20y dwosy | dueig sui

pr—y

wlicilauleled| | piejeweled

{

clajaleled

7.9)8leled]

| JajeLlelEg

J| uogouny

uonessdo

44

Vil 'Ol

p+U Uoneiedy
Z+u uonessdg

U+ uoneisdg

Xepuf 00y dwioy

iien) afipajmouy
sspuis Aeguersgng

US 9,443,192 B1

Sheet 18 of 64

Sep. 13, 2016

U.S. Patent

0%s

8L 'Olid
0gLL
7425
W-U usielsd
9 0LS
U uonessdg o] W-U Uonersdn
£-U Luojeiad m
Z-U Loneiad S Z-uuoneiadp
1-U uoyeiad(4o4pO uogesedp j-u uojesadp)|
u uoiesdo Iopaudia Xaon U uoneiadp
181 wopesedp L+U uoijeiadQ
Z+u uoneiadp|
0is

W+ uvogelado

\ | 190 abpajmouy]

fie ebipaymou; Jeguig Aepuesqng

006

oLl

HUf} UORBULLLOD

US 9,443,192 B1

Sheet 19 of 64

Sep. 13, 2016

U.S. Patent

61 "Old

009,

(o b

WLt

JCABIBUEIE,

,

i
|
|
)
|

GIBloURIR | pISOUIR | ClajouiRed,
! ! |

n _”?: | | |

i

w I

__tgmfemg,,W__oncﬁ,

ag :o_ﬂmgmg

| duweyg st |{])

clajelelnd| [pejsuweiedf|gielsueiey

LisjeuiBied|){Luonaun

71e)eueRd |

uoieiadp

0¢9

e i

a

7

019

Jejquisssy pUBLLLIO)

055

U.S. Patent Sep. 13, 2016 Sheet 20 of 64 US 9,443,192 B1

110

Acquisition and Modification Interface =

130

Artificial Intelligence Unit

|
532 50 i
User Specific Command Disassembler |
info
534
Group Specific] 51 —
Info f Operation List |
52
Iy
i
Knowledgebase _ﬂ—i Knowledge Structuring Unit |
540, i
ﬁ Decision-making Unit |
55
\ Confirmaticn Unit F
530
560,

I Command Assembler i

FIG. 20

US 9,443,192 B1

Sheet 21 of 64

Sep. 13, 2016

U.S. Patent

LZ "Old 43
AoLLg)
L W
piz
Aeiny ieisibey
1 rd ZLe LLE
wun 2ibo
DRSWYIY 1apooaq uononisyj Jejsifisy uonongsuyj Jajunon wesboig
,, | |
GLe
J0ssaon0id
3N

0ol

US 9,443,192 B1

Sheet 22 of 64

Sep. 13, 2016

U.S. Patent

¢Z 'Old

_ abeio)g X4

, \
hN\ ;, soByie|

SUOBUFUBNY |-

Alowapy
e
0BLIBI c
win uogesgipo | | {| | 000 | b
@ousbieyuy 1+ PUB | e —————==| uofeoyddy alemyog _
ey ucgisinbay
i 0zl
0t ok avn
6ol &n1aa Bupnduson sjolay |
0LEL Aeydsig
LZ
SOMION solneq Bunndion
0ogl

04

US 9,443,192 B1

Sheet 23 of 64

Sep. 13, 2016

U.S. Patent

€2 '9id

mmasm_

-

<

o S —

; Kiows

£Z

BULOBIL-UBIWING

@Rl

i
4

A’
s0BLaY| I
uoRBaYIPoN wn
uogeslddy [~ a pue aoueBya
8IBMI0G uopsinboy feioyity
\\ ~
Ve
0zl oLl oct
soiney Bugndwon
sjowisy 3n
oiel %
00} Aejdsig
4
MOMBN aomaq] Bugndwon
g0tl

0.

US 9,443,192 B1

Sheet 24 of 64

Sep. 13, 2016

U.S. Patent

¥Z "9id
shaig = \,,mm
M.N\ 0By
Aoussy = SUILTBLI-UBUINY [
4}
m
3un soueBisiuy | |s0BMeI| LOJROUIDON
S RN pus uoisInboy
osh oi
uoneagddy srempoeg
0z}
.m
\M Reda vJ
74
soteq Bugndwinn
6L

US 9,443,192 B1

Sheet 25 of 64

Sep. 13, 2016

U.S. Patent

GZ 'Old

sbeing _

o

\\\m aoEmE_

| XA

SoepaN

BULDEWFURIUNRH oo

i 'A% !
aoBpa
wn UOREIIPON —
sousBie] puE __oww%mmm
ey uonsinboy
/ ozL
0t oLl
B
i
o0k \; feydsig T
A
gamag Sugnduwion
02

o

US 9,443,192 B1

Sheet 26 of 64

Sep. 13, 2016

U.S. Patent

9¢ "Old

m IB}IOSSY PUBILIOD m

095

-Jﬁ U} UCRBULGUCT f
5S¢

ﬁ U Supjew-ucisinag W

| o

_“E: Bupnonag abpsmouy W = aseqebpsimouy

i Oes 0€5

H 18517 uoyeiadp 7m
LG
aoiaery Bugnduwion siowey
_ 1B|QUISSSESI(] PUBLIKIOD 7@% oLsl
Jun sousBiislu] Eiouny SHOMBN
ol vost

90BJ3]U] UOJEOYIPOY PuE uopsInboy

(1134

US 9,443,192 B1

Sheet 27 of 64

Sep. 13, 2016

L€ 'Old
sbeiojg 14
NN\ soBUSY|
, SUILoBWFIRWING |-
Aowsiy
001 K @
aoBpS| _
wn UOHEIPON W .
gouebyeyu) = e T P — -1 uoljesljddy eemyog
[BIOUY uogisinboy
Al
ggl Jvn cil
soa(g Bugndiuon
sjowey *
OLEL Aeidsig
| A
SOMIBN eolas(] Bugndwon

U.S. Patent

0oct oz

US 9,443,192 B1

Sheet 28 of 64

Sep. 13, 2016

U.S. Patent

5619 dalg

0519 doig

G¥L9 daig

ovLa deig

ge19 daig

gL daig

aleis Jold e 0y aoiaap Bunnduiod
aus Buliojsai puB 198 UCHOMIISL] puU0oas palipou

10 pUDDBS PEINDaXa Bul jo Uonnoexa sl Bupoue)
f

198 Uolonasyl

pLOES PElIpCU JO pUCSeSs PaINDaxe al Buney
[]

a01aap Bunnduwioo
ay} uo esegabpa|mouy auyj Lo} 185 UORONASY|

pU003S palipoW auy 1o puodss oy Bupnoexs
7

SISA/RUE ¥B1U0D UO
paseq SUOIOG S} L0 8UC 1883] 12 10 asegaBpamouy
U} Wi} 188 LoioNAsUl puoaas ay; Buikjipop

aseqalpa|mouy Sy} WO JoS Uoonsu)
1811} B} DUE 185 UCHONJSUI MaU 3L} Usamlag
ALEIWIS [BIUBISANS € S a1y tey) BuluLioe

aseqgabpa|mouy SU) WoI) 1as uchonisu
18111 843 JO uoruod SUO 1588 1B YJIA 183 UORONISY|
Mau ayl o uoiued auo 1ses| 1e Buledwon

8¢ ‘Old

suolpod 18s uononisu;
OJUI 108 UORONIISU] MAU 8L Bulquiassesid

soinep Bunndwoo syj uo uonelsdo
ue Bujwioued Jo} 18s uononasul mau e Buiaieoay

suoiyod

oy} 0 $18s uononuisul jo Aljednid B Buisuduios
aseqabpsjmouy e ol ‘suciuod 19yl 0 Buo ISES| JB
10 ‘818% UOIONIISUI PUCISS BY) puB 184 8y Buucig

suoniod 188 UONONISUI Ol S18S
UOONASUI pUODSS BU) DUE 18JI 21 Buljquiassesi(

991A8D
Buindwos e uo suonesado Buiuiopad o) s18s
UONIONASU! PUQDSS BUI pUR ISIY B4 ‘195 Uononasy
pUCOaS B pUE 18S LoRanIsUl 1) e Buiaiaoay

(0018 potie

gzig daig

0zia daig

S1Lg daig

0bL9 daig

561 dats

US 9,443,192 B1

Sheet 29 of 64

Sep. 13, 2016

U.S. Patent

§579 dayg

0529 doig

$pZ9 doig

0pzg dais

§cz9 dois

oczg doig

aoinsp Bunndwoo
aU) Lo 93GeBPAIMOLY B} WOJL1DS UCRINISYI
DUCDSS Palpo Byl 4o puooes sy Bugnoaxy

e

PO|ooUERD SO 'PBLIPOW JOULINY ‘PRjosies

ag o} suondo se *suciuod sy 40 ‘ssegsbpamouy
BU} L0 185 UORONJISUL PUOSSS PaIJIPOW au)

10 pucoas ayy aomap Bugnduwiod ay; uo Buidridsiq

SISAJEUR XBIUCD U
paseq suoniod sif JO BUC 1Se8) j8 10 asrgabpsimouy
94} WO} 188 UCHOMASU) PUeoas aly BuAlpop

oo epin

ao1A8D
Bunnduwios sy} U 185 UOHONBU MBU s Bunnoexg

e

3sRqabpa|Mouy 8Ly} WO J8S LoonSY]
1S3 U PUR 195 UOHONSU MBU Byl UBBMISY
Auepuis feaugisans e s asey) 1ey) Buuuusisg

232006pSMOUY B4} LU0 185 LORONASUI
184 81 O UORIOT BUO 1SER] 18 LliM 105 LORONASL)
Mau 8y 1o uopod suo 1ses; e Bunedwon

6¢ ‘Old

suoniod 195 Uononisyl
O 19 LORoNNSU Mau oyl Bulquiassesiq

sowmep Bugndwos sy uo uoikiedo
ue Sujwioped 1o} J85 uoRonasyl mau e Buinisosy

suofued

nep Jo sies uononasus jo Aueinid e Buisudwiod
asegsbpajmouy e 01u1 ‘suopad JiBY) J0 SUC J588) j8
10 'S}9$ USHONISU PUCOSS 9y pue 1siy oy Bunolg

SUOILIOG 189S UGHONASY! Ol 5195
UORONASY! PUODSS BU pue 18y ayy Bugwsssesig

a0ep
Buiindwios 8 uo suoyeisdo Buiuouad 10 8198
LORONASUL PUODSS B PUE 154} B4} '19S UOHONASW
pUCoDS & PUB 188 UoRoNAsU js4) 2 Buiaisoey

/ 0029 pouleiy

G279 doig

6729 doig

5129 doyg

0129 dois

G079 deig

US 9,443,192 B1

Sheet 30 of 64

Sep. 13, 2016

U.S. Patent

§7¢0 doig

079 doig

s19$ Uolonsul

AiCyedionuE 8} YIM DOIBIDOSSE UCIELIOL

BI)XS 2UQ 1589 1B 2y} pUB 8195 LCHonsUl
SAIEIRWOD DY UM DIJEIDCSSE UONBLLICU| BIXS
2u0 jses; 8 au) ‘aseqebpamouy auy ol 'Bulols

5198 UOIoNAsUI pajnoaxe Ajusdsl

jo Anjednid sy Jo si8s UoiSRISU pancaxe Ajjuadal
1SOW ay epnjou) sjes Lonanasu; Alciedionue ey
PUE SIS USIONJISW pejnosxs Apuanal jo Ayeinid
U} JO S188 UDIONASY| paInoaxs AjLaoal 1888

U} 9pN|OUI S18S LIORONJISU] SAREIEdUIOD B UIBJaYM
‘8188 uclonisul Asojedionue jo suomod pue

5185 UCIonSUl saetedwos jo suoilod jo Aljelnid
e Buisudwos ssegsbpe|mouy syl ‘aseqebpaimouy
B CjUl $18S Uolonsul Alojedisnue jo suoiuod

puE s1es uolonisl saneiedwos jo suoilod Buuoys

0€ "Oid

suoniod 19 UCHOMISL OjU! $385 LORONASU
panasxe Ajiuanal Jo Aueinid aul Bugjqiessesip

5188
LOn2NISUl palnoaxe Ajjusoad 1o Alfeinid aul yim
PaJEIDCSSE UONRULIOJUI BAX8 8U0 1583 18 Buiaigssl

goiaap Buindwiod e uo

suopelado Bujulioped o) s}os UORONASU| pajNoaXa
Apuaosi jo Ayjesnid sy ‘195 LOONIISUl paINDEXE
Anuaino e Buipnjoul pue o} Joud Ajsieipaiiu
poINo8Xa $19S LUORONIISU; 9SUCWOD $188

uoponasul painoaxe Ajjueoas o Ajeinid sy ‘sies
UONoNJISU! patnoaxs Ajuanal jo Aieinid e Buinigosl

\
/ 00cg poyisiy

gLg9 deig

0L£9 deig

§og9 deig

US 9,443,192 B1

Sheet 31 of 64

Sep. 13, 2016

U.S. Patent

§epg daig

0tk deig

§7p9 daig

0zv9 dois

aseqebps|mouy eyl Ui 188
uonongsul Aiojedipnue alow Jo auc Sunedidnue

SIS UONONIISUl MBU B} LM
PEIEIDOSSE LONRWIOIM: BIXS 58U B8] 1B Buinga)

aseqabips|mouy

a3 U S1e5 Uoionsu aageledwog alowl Jo

3UQ PUE $}25 UCIIOMIISUL MOU SIOW JO BUC UDBMIB]
Apewis (Bnueisqns g 51 alaul 1eyr Buiwielep

s0iAep Buiindwon ay; uo suonelado
fuiwsopad Jo; sias uononisul mau Buiniaoal

esegebpeimeUs ou) Ut SIS UDIONASUI

SANRIECLIOD L} LJIM PRIEIDOSSE LIDIELLIOJUI

BIIXS 9UC 1SB2] B UlIM $19S UORSNASU! MaL 8L} LM
Pa1BI0SSE UOIBLLIOIUI BAAXS SUC 1589 Je Buieduioo

aseqafipsjmouy
U} Ul 519 UOHONISU! sAeledwios sy jo suoiuod
Ul S18S UORONASUl Mau 8L Jo suood Bulieduod

aolaap Bugndwos e uo suolelado

Buiwiopad Joj s1os uoponisy) Aojedichue

sy} pue aaneiedwoD B} Lislaym ‘sIas uoiansu
Aciedionue syl ylim PBIEIDOSSE UOIBLULIOJUI

EI}XB 9UD 1SBS|] puR S}85 UContsul aapeiedwoo
aU} YIMm palein0sse LOBULICHUI BIXS BUC JSES| 1B
52.0S Jouun) aseqebpamoLy sy ‘S19% LOIONJISYl
Aioredionue Jo suollod pue Sias UolaNASUl
aane.Rdwoo Jo suoiued Jo Aweinid e Buisudwos
asegqabpapmoly 8y} ‘sjas uoponasuyy Aiojedisnue
10 suofled pue s18s uoiongsul saneiedwod

10 suojod sau0s ey} esegebpaimouy e Bujsseooe

\

“~— (0¥9 POLIe

Giva deig

OLb deig

S0pg deig

US 9,443,192 B1

Sheet 32 of 64

Sep. 13, 2016

U.S. Patent

€ I9POR

¢e "Old

J I9PORW

U.S. Patent Sep. 13, 2016 Sheet 33 of 64 US 9,443,192 B1

110

Acquisition and Modification Interface AR

130

Artificial Intelligence Unit

50 \
Command Disassembler I

, |
Operation List |

.

Neural Network (3—1 Knowledge Structuring Unit I

54 .
1
= Decision-making Unit l

55 J]
\ \ Confirmation Unit]_K

850

560,

.,
\\\

Command Assembler ;

FIG. 33

US 9,443,192 B1

Sheet 34 of 64

Sep. 13, 2016

U.S. Patent

¥E "Old
0cs 058 0Ls
W J8AE [W-u voeisdp] {w-u uogessdp] [w-uuogelsdg] |w-u uojeledp|
: eyss : : : :
Z-U Jehe eqg Pm&\m Z-u uoelsdp} | z-U uopessdp)]
T m //J.r\\\
avss | \\\\,//ﬁwwwwxzf
e v] Ty
1-u seke -uoesadp| [i-uuogeisdg] [i-uuogersdg] | |-Uuopesdp|
= //V«A\\\\\ s
o \\\\ "~ .
AT — —
u .,m»m\.._ [uuopeiedg] [uwuopessdp| | uuoperdg] | uuojeledg)
9¢68 —— %sswm\\\ //muuwx/////
ol = T
i Jafe [|+u uojelodp] |} +U uojesedp| [j+uuonessdg] || +uuogeisdg] [} +u uojeiedp] [} +U uoessdg)
7 ~— T B ~
ppss | T ~_ @ e
pagLe | >~ g I .

2+ Jede pesg [zruucesdp| [z+uvopeisdpl [z+uuonesscn] [zsuuogeisdp| [7:u voleiedy

™

. 8peg \\ : : . b4 :
8G0L9
W4y JoAET W+U uopelsdp] fusu uojeladp] i+l uogeiedQ| ju+u uojeiadg)
32019
YiomeN jeineN Jary uogesedg
Jiun Bupngongg sfips|molry

U.S. Patent Sep. 13,2016 Sheet 35 of 64 US 9,443,192 B1

610db 610dc
Operation | I Operation]
~= X
Occurrencesﬂ:(i\\\ Oceurrenceas=15
Weight=0.4 \\\ Weight=0.6
///)\\ \F\
/] \\\\\ e — 853
8530 l Operation] P
N
510da
FIG. 35A
§10db G}Odc 610dd
Operation l [Operation] l Qperation
~ A L
2} =
Occurrencesgo\\ Oocurrences=15 . " Ocourrences=1
Weight=0.385 \\\ Weight=0577 7 Weight=0.038
P \\\\\ t\/\ 7<:/\ """""" —853q
8530 v es3p
© [Operation l
610da
FIG. 358
610db §10dc 610dd
Operation | I Operation l l Operation
S & o
Occurrances=11 ™ Gocerences=15 /// Occurrences=1
Weight=0.407 Iy Waight=0554 4/// Weight=0.037
N 853q
7 D
- - T 853
8530 l Operation] P
N
810da

FIG. 35C

US 9,443,192 B1

Sheet 36 of 64

Sep. 13, 2016

0zs s 9¢ ‘Ol ote
WU JeAeT [w-uuogesedg] [w-u uojeladp)
: Eres ©0L9_ : : :
- hm»\ Z-utogesdp] | z-uuogeisdp
¢ #1 v_mmw/ 1 — M_T/_Am\ |
avgs 019 k « ~ ™~
LU .,m»m\a_ (£c8 /_ }-u co_ﬂ&mg_o_ _ [y coﬁago_ m L-U cozewao_ m |
N \\\ ///// - ////L/
op5e > e > —
e ~ e s
u Jeke] [Uuohesdg] [uuojelsdp] | uuogeledp] | uuoeledp] | uuoh
L _
ojole wese |
< G
LU ._&3 _Ic co_ﬁ_maom _ L+l co_ﬁ_wmo_ :E co:mgo_ L+ camﬁmao_ m LU cog_umk_maom __;é uohessdp]
. i T
/ |
prsg [|
PiOLS ugsg
¥ g
Z+U Jofe] [z+uuoneiadg] [zeuuojeledp] [7+u Uojeladg] [zeduojleledg) |7+l voeiedpl 7+ uojesedp)
. :
s o¥58 \
. 8019 - s
W+l Jeke G+UUOBRO0] RsU UONEIBdD| RV UDJRIRdQ] W+u UogeisdQ] Au+U Uogeiedl WU uopelsdQ)
|
SEGLD
JUOMIBN JRInaN 1817 wopesado
jun Buunjongg ebpepmouy

U.S. Patent

U.S. Patent Sep. 13,2016 Sheet 37 of 64 US 9,443,192 B1

853h — 853i
/T\ S
\

P k
Qccurrences=10 " ! Oocumences=15
Weighi:M | Waight=D.6

///
Operation Operation
610gb 610gc
FIG. 37A
610ga
Operation
853h — T ' —-853i
- f”’)\(\ ,,,,,,, 853]
Occurrences=10 //> . ! Occurrences=15 T Occumences=1
V\'eight:0.3§§// Weight=0.877 Weight=0.038
Operation Operation | Operation
N
610gb 610gc 610gd
FIG. 37B
61/ Gga
Operation
853!1\\ — //!\\\t\»/// 853i
~_ f’/ - 853
Ocourrencas=11 //'y :Occurrences:15\<'/4 currences=1
Weight=0.407.—~ | Weighi=0.558 . Weight=0.037
Operation Operation | Operation
~\
610gb 610ge 610gd

FIG. 37C

US 9,443,192 B1

Sheet 38 of 64

Sep. 13, 2016

U.S. Patent

8¢ "Oid
ops 0% gLoL gig
N ,
,,
,,
\
w-y Jede [u-uuogelsdp] [w-uuoelsdg) [W-U uoessdp] [w-u uolesadg) mf)x ETGIEE
P epse : : : :
Z-u E»m\.m 2qo _,m\L Z-u c\o_ﬁlg,o_ { 2-U Uogesadp)] #ad| [7-utonen
= ~ -y
avss BEG8——— P
-~ ///
LU JeAeT _ Ll co:smgo_ [1-uuoleiadp) | }-ulogessdpl | |-uLonesedp) Pt
2758 .
u safe | uuojeiedp] | uuojesdp| | uuopesadp| | U uojessdg) Ao
_ S o S
T\ 7 AT T R
L+ .EA@.“ {1+uuonesadp] [}+u Uoeiadp] [i+uuoeledp] {|+uuoesadp] || +u uoneiadp] [} +U uoleladp)
, //// \\\\ /// /// \\
PYSe ~ T~ - T~ T
//// o ~ TN ™
Z+U hmmm.n [Z+U Lojeiad(y] |z+UUojeladn] {z+U UOHRIdD| |Z+uiUojeIsd(] fz+lU UoRlat)
: 9vs8 : : : : :
PIFGIPETY: 31 fu+u uolessdp] ju+u UofeiedQ] U+t UoRIBdG] U UoliRIRd)

YIOMION [eInaN

1817 uogeIedo

Wun Bupew-uoisipeg

US 9,443,192 B1

Sheet 39 of 64

Sep. 13, 2016

U.S. Patent

6¢ "Old
ovs 0S8 o_\nwv 0LS
.,
/
,,
Wit Joke ‘F\
: Pic : :
7-u 1ofeq —E30L9 A | [ZUUoIERID
avss resg 0 < 00 e 22015
LU hm»m\._ fiuuogeiedg] | j-uuogelsdg) | |-uuogeledg) A | [1-Utogeiadp
s 00— %0 aspL9
S8 XgG8 T
u ‘_w&ﬂ [iuenesdy] [0 :o_uﬁwaoTl!/f.omor_‘rM,mmw Ao
02050 g0
TR ——Agss

L+l Jokeq
~
14471

T+ _wﬁw._
T dp5g

W+ jefe

[1+U uoheiad] [i+U Uogeiadp] |i+u UolssdD——pagig

070 GT0 ///mv/oﬁ __zec
[z+U uogeiedp] [z+u uonessdp] [z+U uogesadpi

-
.
-

82019

NIOMIBN [BIneN

1517 uonesadg

3un Suppui-uoispsg

US 9,443,192 B1

Sheet 40 of 64

Sep. 13, 2016

U.S. Patent

oS 068 0% "Old QZ,:‘ oLS
.,
\
,,
Wit Joke m_&.c cocemao_ mE.c :o_«m_mao_ ‘F\ W-U LOHeIs
” \@vmw m&a —.m// N N
i Ex.ﬂ ~z-uucgessdp] [z-v uogessdg) A | [7-utopeisdp
3EGe L
apss y\/ e2019
T~
LU hm»m\._ m }-U co_ﬁaao_ fiuuogeiedpl | j-u uojessdp) m |-U cozm_&om A | [1-Utogeiadp
- S~ //;///
58 r////// 4o0L9
u E»MI_ [Uuogeiedp] [ulopedp| [Uuogessdp] [Tulopeisdg] [TUlogeisdg] [utopgisdg) Fof | [UoeiadD

L+l Jokeq
o~
PPE8

T+ _wﬁw._
T dp5g

W+ jefe

[i+u uolisadp] |} +U voesedp] 1)+t uoljessdp) L+l :oq_«m_maom

peiiUoeiedn] 1+ unleisdp)

[z+U voelsdp] [z+U voiessdg] [z+U voiessdp] [z+U uojesedp] [z+U uoessdp] [z#U :oq_“m_maom

. - . - - -
. - . - . -
- = - = - =

B+l UoeiedQ] lueU voiessdp] BuU UoesedQ] Ul Uoieisd)] B+l UojRIBd)] W+L UoessdQ)]

NlomjeN [eineN

1517 uonesadg

yun Bupjew-uoiswag

US 9,443,192 B1

Sheet 41 of 64

Sep. 13, 2016

U.S. Patent

L by "Old or s
|
\
,,
Wi Joke \F\
P epse :
[_wx.w\._ [z-uuogelsdg] | z-u co_“mumao_\.\)m:mmw A
avss om./o/V om\oll ~-9¢58
j-U Jsheq wmmMmeWmHL _,cﬂu_@%w/_ I Ad
358 N
u _w»M,_ igcg A

L+l Jokeq
~
pPye8

Z+u _wﬁm._
T dp5g

W+ jefe

15 S ;
Z+U UOlRIeaA0

CURS:

-
-
=

NIOMJEY [einoN

1517 uonesadg

yun Bupjew-uoiswag

US 9,443,192 B1

Sheet 42 of 64

Sep. 13, 2016

U.S. Patent

0Gs

ey 'Old
A3
LZLL
Ww-u ugijeis e
Heoto 019
y-U uoneledp e w-Uuoneladp
¢-uuoneied
7-u uoneledo S Z-Uuoneiadg
BT o) Jsyipoiy uogessd I [-U UonesadQy
U vonelsdg sspidio) ajuog—~———{ uuojesad]
1817 uoheled L [uopeunguos 1980 E
oig : :

- oqeiiiiies 1850

ocil

W+

U uoneledn

ihed Jejuig Aequeisqng

g58

JiUN uopeulEuoD

US 9,443,192 B1

Sheet 43 of 64

Sep. 13, 2016

U.S. Patent

£ "Old
0zs 0s8 0L9
w-u Joke] jurilegpgisull ju-uiogiegisull i og pg Isyl| 185 15Uj
P epas : : :
S
Z-u ke \?EEE_féﬁg
R
arsg 029 7 \ //,W//V/////
@ o e
j-u sehe £58 fi-tiodjegisul] fi-uiodjegisul] fi-ledjegisull - 40d o8 1Su|
T o
o158 e

u _w“mn_

[ulodlegisul| | uioglegisul] | ulodiegisul| | ulogieg isu)|

~ -

-

T~ N -
L+ Jofe wglsulf [l+ulodjag isul] | U104 188 184
o~
pyER T~
Ty

T4l _wﬁm._ [ssulegieg syl fz+ioglegisul| [gsulogiegisul} fz«uioglegisul] [7+ulod1eg sy U104 195 1Uj

T dvse : : : : : ,
W+ Joke] f 148G 8Ul} el iodlagisul} - i+l ted 13g 18U} \ y

LA

NIOMISHN [BINSN uogesedo

Hun Buinongg sbpsimouy

US 9,443,192 B1

Sheet 44 of 64

Sep. 13, 2016

U.S. Patent

vy 'Old
obs 0s8 o:,: 0L9
,_
\
\
/
Wit Joke jurilegpgisull ju-uiogiegisull i og pg Isyl| P | U104 195 18U]
P epsg : : :
v
Z-u ke \"N.E&_mmz__ fg-ulod 185 18| P | U104 BS U]
N
arss 029 \ﬁ/mr/V/////
»\ \\\ y Tt —
1-u ssfe £58 fi-ilodjeg sull [i-ulodlegjsul] fi-udodjegIsulf [i-udodjeg jsul] " A
T S,
58 ~—
:E&S [ulodlegisul| | uioglegisul] | ulodiegisul| | ulogieg isu)| P | [1104 785 350]
T~ D A - - 075
L+l Jokeq wgleul [irusodpg sl
~
PPS8 e
I
N+Ewﬁw._ [ssulegieg syl fz+ioglegisul| [gsulogiegisul} fz«uioglegisul] [7+ulod1eg sy
: s : : : : :
W+ jefe [wsulogiagisul [uel0giag sy} [weu 104188 isu)]
NIOMISHN [BINSN uogesedo

yun Bupjew-uoiswag

US 9,443,192 B1

Sheet 45 of 64

Sep. 13, 2016

U.S. Patent

G514 daig

0512 daig

chL. doig

opLL daig

§¢1. doyg

01/ deig

a1.is Jolid e 0y 821aap Bugndwos
au Bunoisal DUB 1S UCIONASU! DUIDS PayIpow
J0 PUODSS [9IN0BXS BY) 1O UoiiNdexs oy} Buijeouen

)

18S UOIONASL)

PU0J3S Pajipowl JO pUCoEs panosxs ay) Buiey
[

32ir8p Bunduwios
B} UO YIomaU jinau sy} Wolj Jas Uononisul
pUODES PAINCW By} JC pusss aly Bulnoaxy

¥

SiISA|BLE 1X8}UCD
Lo paseq suoniod 81 JO SLO1SES| 1B IO Ylomiau
[BINSU U} WO 198 LORINIISYI puooas aly Buikipop

I

WOMBU [RINDU BU WY 18S UDRINISUI
1841} BYI PUB 195 UOIONASUL MBU AU} USaMIaq
ALIBINUIS [BIUBISANS B 51 840y} 1ey) Buliwelsg

YoMEU [N BU} WO 188 UoKINIsL
18114 843 Jo uoiHod BU0 1SES| 1B UJiM 195 UD[IONISY)
mau sy 1o uciiod suc ses; 1e Buueduo)

¥ "Old

suciiod 185 uogonisul
31 195 UOONASU) mau ey} Buiqwisssesi(

aoiaep Bunndwoo sy uo uoneedo
ue Buiwioped Joj 195 UORINASUI MaU B BulAesey

suoluod

Jioyy 1o s3as uoponasul jo Aijednid e Buisudwos
Yi0MIBU [BINBU B OJU] ‘Suciuod JisU) O BLO jSB9| B
10 '$198 UDIDNIISUI pUODSS BY) pue 164y oY) Bulog

suoiicd 195 UONONASL 01U S1ES
UOIONIISUI PUOD3S 3L pUe 1s)) 8y Buiquisssesig

80lABp

Bunndwod e uo suoneiado Buiwiopad Jo) 5198
USHOMASUS PUCCSS BU) pUe 18Il BY) 185 UoRONASUl
pu0oas B pUE 95 UOROMIISU| 1S

[001 polsiy

gzi2 daig

gzLL doig

G112 dajg

042 daig

5012 dajs

US 9,443,192 B1

Sheet 46 of 64

Sep. 13, 2016

U.S. Patent

TR S

0622 deig

SvzL deis

opz. deig

Gez. doig

0cz2 deig

aoiasp Buipndwos
31 L0 YIOMIGU [BINBU UL WO 19S UONSNIISUI
pUOD9S PAYIPoW By] Jo pucoas ay Buynoaxg

[S|90UBT IO ‘DayIDOW Jayung
'03102}3s 2g 01 suoNdo se ‘suoiuad Si Jo YoMy
[BINSL BY) W0 195 UORONASUI PUODSS patipow 3l
Jo puooas ay) acirep Bunndwoo sy uo Buikeldsig

sisAjBUE X810
Uo paseq suoiod syl jo 8UC JSB8) 1B JO Ylomsu
[RINBU U} W0 198 UCHONIISUI pUooss ay) BulAlipopy

20IASP
Bunndwod sy o 189S UoionsUl mau ayy Bugnoaxg

HIOMIBU {EINBU U} LUOY 1S LORONASU
1S11} 8y} pUB 188 UORONASUI MBU U] UBomIag
fepwis [enuelsgns e st alay ey Buluiisiag

WOMIBU [BINSU U} WO J8S UOISIIISU!
1841 8y} jo Uoiiod BUT ISES| 1B LIIM 195 LONONIISUI
MmaU sy} jo uoiuod auo 1ses e Buliedwon

9% "9Oid

suoipod 185 uononisu
O}UI 18S UONONASU| MU el Buljqiessesiq

soiaap Bunndwion sy} uo Uoieiedo
ue Bulwopiad Joj 198 uonondisul mau e Buiasdsy

suoipod

JoUy1 Jo sjes uononasul jo Ayleinid e Buislidwico
JJOMIBL |BINAU B 01UI ‘SuDiod Jiay JO 8O ISBS) 1B
JO ‘S}8s UORONIISUI pU0osas au} pue sy ayi Buuoig

suoiod 188 UONONASUI OJUI S18S
UOONASU! PU0DaSs U} PUE 18} o) Buljgiesses|q

20IAap

Bunndwos e uo suoielado Buiwiouad o) 5188
LOIONAISUI PUODSS SU) PUEB 1Sl 8] 188 Uolonasul
pUCOaS B pue 185 UCHONASUN S B Buinieoay

/(00¢. poulen

gzzl deig

0zz. deys

Gzl doig

0Lz. deis

§0z/ deig

US 9,443,192 B1

Sheet 47 of 64

Sep. 13, 2016

U.S. Patent

g7¢) daig

ozes deyg

WIOMIBU [BINau By} Jo siade| Aoiediopue

JO SapoU By} OlU} S}18S UOKONHSU| PaInoaxa

AjjLia0a 1S0UW BU} Uit PBIBISOSSE LIOBULIOM|

BJIX@ 3UO0 1589} 18 2k} BULOIS pue Yiomiau

[eInaU ay) Jo s1ahe| saieiedilo Jo Sapou s}

Clui SI9S UDROMISUI Palnaaxa ARUSIa. 1SBD; AU} Ljim
PalBID0SSE UOHBWIOLI BJIXS SUD 1589 JB au Bulols

JIOMIBU [BINBU BU) JO sIake Alotediolue

40 S9PCU OJUI $18S UCNINASUE pajnoaxs Ajjusos)

10 Ayjeinid sU JO S19S UOIINASUL palndaxe Ajusdsl
180W 8U} Jo suciniod Bulols pue yJomiau [Binau g
JO s1afe] oAlBIRCLIOD JO SBPOU DY 5185 O3NS
penosxa Ajusoas jo Ayjein|d aui jo Sles Loponsul
paInoaXa Ajjusoal 1ses| aU jo suojuod Buliols

iy "Old

suoiod 195 UDTONASU! OIU! S195 LIORONASU|
panosxa Ausoas jo Aeinid sy Bujquisssesip

s1e8
LONONASUl paInoaxs Apuaoas 1o Ayjeinid sy yia
DBLEID0SSE UONBWIOUI BJXS BUC jsE8) 18 Buiaisosl

aolasp Bunndwod e uo

suonelsdo Burioad 0} 5188 UOIONSLE pajNDaxa
Apusoad Jo Aljeinid ayj ‘195 UOIDNIISLI PRINDBXS
Anuaung e Buipniout pug o) Joud Ajgieipawiwl
21N09X2 §19S UCHONISU 8SLidWOoD §188

UonaNAsU papnoaxa Kjuasal o Aelnd ay) ‘sjes
uononAsy panaexa Apuadal o Ajjelnid B Bumass.

/ 002 potjaiy

G1€1 delg

oLgs daig

S0gs daig

US 9,443,192 B1

Sheet 48 of 64

Sep. 13, 2016

U.S. Patent

gepl doig

osps desg

§Zvl daig

0zpL doig

YIOMIBU [RINBU 8L} Ut $10S
uononisul Ajojediopue alow Jo auo Bunediogue

HIoMaU

{RINBU Y] Ul $108 UORONASU! PARRIBAWCS AJ0W 40
3U0 pUB 133 LOIDNASUI Mal 810U JO 3U0 UBaMBY
IS [BruBISqNS B si a4ayl jey Buiwelep

YJOMIBU [BINSU S LI 8188 UOIONISU)

SAIBLRAWIOs BU) LM PoIBIDOSSE UCIBULIOMI
BIX3 DUO 1SBS] 1B UlIM S195 UORONIISL MAU B LM
Paje|n0sse LOIBLLIONU BIXS 2UQ Iseg) e Buuedwoo

FoMIaU [BInaU ey}
U} 8195 UGIDNISU) SARBIEAWOD QLY JO SUCod BU}
Ulm 5398 LOIONISU Mal au) Jo suojuiod Buuediuoo

8V "Old

S195 LOYOMISUl MOU BY) LM
PEJEISOSSE LOKRULIOIL BIXE SUC 18BS; J8 Buinigoal

201A8D Buindwios sy uo suonesado
Buiioyad oy S19S UOIOMISUI MBU 2A1808)

ao1aep Bunndwod e uo suoleiedo

Buiuiopad Joj syas uonanisu; Aojediopue

BU} puUB BANEIRAWOD BU} UiBiaym ‘S19S LOIONASUL
Alojedioiue 8yl YIim PoIBIoosse UoEuLIojUI

RJX@ 8UO JSBS| I8 DUR $}9S UOIONIISUI BAEIRIGS
SUL UNM DBJRICOSSE UCHELLUOL RIEXS SUO 1589)

12 $2.01S JSUMN} YIOMIBU [BINSU BU} 'S10S LIOIoNJIsU
Aioiedicnue jo suoiod pue S18s UoHOMSUl
aaljesedwod jo suciuod jo Ayednid e Buisidwon
Yiomieu edneud ey} ‘sies uonondsu Aciediopue

10 suonled pue $19s UoIMSUl saleledwo)

Jo suood $2.01S 1BY) YJomiau [einsu e Buissaooe

[00%Z PouleN

Siyl doyg

gLp. deig

§op2 deig

US 9,443,192 B1

Sheet 49 of 64

Sep. 13, 2016

U.S. Patent

87 "Oid
afeig =
7
saels
T — auyoBw
. -uewny |
R
£z
|
Wy sospepg| | | i . ﬁ
acusbieiy) uofesyipog | | e JOSMOIG QBM
feloymy pue uogsinboy | ‘
0Z1
0cl oLl
3N wﬂ mw.
__w_
001 Reidsig)

Jandwio]) jeuosiad

\\\

d

0l

US 9,443,192 B1

Sheet 50 of 64

Sep. 13, 2016

U.S. Patent

06 "'Old
sbeiig =
R\ |
soee|
Koot supoew
\\ -ueuiny|
;&
£z
|
W somgoi| | || . m
eouebipenyf == uogeampowy | | - wayshg Bugesedp
ooy pue uonsinboy)
0zl
ol 135
VN 1z
|
11] Aeydsin

sndwos jeuosied

0L

US 9,443,192 B1

Sheet 51 of 64

Sep. 13, 2016

U.S. Patent

+G "Oid
obmioyg f=—
T
s
S0BU|
Kiowayy = suoeus
BT F
i 44
£z
A
wn aoapiG} m
ousBlen wopeaypon | | —— < opemndiy piom
[eouY pue :O%E:UQ{ =
e
0Z1
1159 0ii
A 2 !
ocw Aedsig

ssinduion [euosisd

1A

U.S. Patent Sep. 13,2016 Sheet 52 of 64 US 9,443,192 B1

Senator John Doe 471b
123 Hart Senate Office Building, "
District of Columbia, 20510-3903

472a 472b
Dear Senator Doe:

I am writing this letter concerning the environment|| in our state. As you

know, the air pollution in our state has reached critical levels as indicated

in several recent studies. | urge you fo support all legislation or other

initiatives to help reduce pollution.

FIG. 52

US 9,443,192 B1

Sheet 53 of 64

Sep. 13, 2016

U.S. Patent

€5 'Did

sfiiig ey

i

e

SHoRUoD
Kiousapy oleld]
e epop|
k i
GG64
Hn] _m_
souebiiey; uogeogipo | | e - uogestddy eipaiy
eroumy pug uogeinboy
oL wmm ;
oet gLl SOBLSHY
PURcS
3Ivn 1z !
FATA N
00l ! Aedsig
seesds
ioReld BIPeiA
/
0L

US 9,443,192 B1

Sheet 54 of 64

Sep. 13, 2016

U.S. Patent

s "Oid
sbeioyg ps—
wm\ } Tcoﬁo_uﬁ_\
Kiouspy vs<s uoaios
ysnaj,
7 2k
: | ML
sozubooay w
poads
£§2 m
Hun soBHSY| . :
souefiiayu) == UORRORPOW | | e uogeafddy S0
feroyly pue uogsinboy | . !
2182
0zt b
oct 0Ll SUBLU
punog |
3N Lz *
zZ52 !
001 N Aeydsiy
Isypads
IOAIISY §dO
oL

US 9,443,192 B1

Sheet 55 of 64

Sep. 13, 2016

U.S. Patent

GG "'Oid
abeioig ="
e
Arowspy = e
3 sumg |
A% M
: 1¥9
b
wn s0BLau| - W
sousByelu) —| uogeoypON | _ | = uogeayddy euses
[IogY pue uogisinboy | .
e
gel 1145
avn 12
001 Aeydsig
aoiaag] bunuen
0L

US 9,443,192 B1

Sheet 56 of 64

Sep. 13, 2016

U.S. Patent

g OUBUIIS

96 "'Old

O oueualg

U.S. Patent Sep. 13,2016 Sheet 57 of 64 US 9,443,192 B1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 xaxis

U.S. Patent Sep. 13,2016 Sheet 58 of 64 US 9,443,192 B1

© 1 2 3 4 5 6 7 8 8 10 11 12 13 X%

U.S. Patent Sep. 13,2016 Sheet 59 of 64 US 9,443,192 B1

0 1 2 3 4 5 6 7 8 8 10 11 12 43 xaxis

U.S. Patent Sep. 13, 2016 Sheet 60 of 64 US 9,443,192 B1

645

6 1 2 3 4 5 6 7 8 9 10 11 12 13
FIiG. 80

U.S. Patent Sep. 13, 2016 Sheet 61 of 64 US 9,443,192 B1

0 123456789{01112{37@5

U.S. Patent Sep. 13, 2016 Sheet 62 of 64 US 9,443,192 B1

649

6 1 2 3 4 5 6 7 8 391'011121'375is
FIG. 62

US 9,443,192 B1

Sheet 63 of 64

Sep. 13, 2016

U.S. Patent

JuBIIONAUT

£9 "Oid
\ sbeiig = Josusg
L ‘ 976
hiowspy »
” JSIO[UCD
| 4 ;
| 626
20BpBIY| m
josuag
sZ6 :
Jun eoBpBlY] { !
govebis) o= uopesgpow |_ | o= uogeogddy jopuod
jeoyY pue vogsinboy
1Z6
QR ,,h
0g1 oLl aoBpe]
JOOW
N
e 826
001 {
ey
1040y
0z

US 9,443,192 B1

Sheet 64 of 64

Sep. 13, 2016

U.S. Patent

79 "Oid
wmgeuw e ——
e
aoepsiy]
A RIowsl o P
\ -UBnH
I Zi
€T i
Hun SR N
soueBljequy == uogedgipop | | hoooe] uogesyddy eseqejeg
ey pue uogsinboy | m
0zt
gL oLL
3N iz h
0oL Aeydsiq —
isneg
1178

US 9,443,192 Bl

1
UNIVERSAL ARTIFICIAL INTELLIGENCE
ENGINE FOR AUTONOMOUS COMPUTING
DEVICES AND SOFTWARE APPLICATIONS

FIELD

The disclosure generally relates to computing devices.
The disclosure includes devices, apparatuses, systems, and
related methods for providing advanced learning, anticipat-
ing, automation, and/or other functionalities to computing
devices and/or software applications.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

Computing devices and software applications operating
thereon have become essential in many areas of people’s
lives. Computing devices and/or software applications have
been built for purposes that range from web browsing, word
processing, gaming, and others to vehicle automation, fac-
tory automation, robot control, and others. Operating a
computing device and/or software application commonly
requires a user to manually direct the flow of execution to
accomplish desired results. Depending on the user interface,
these directions may be conveyed to the computing device
and/or software application through simple actions such as
selecting items in a graphical user interface or through
complex and lengthy computer instructions. As such, oper-
ating a computing device and/or software application to gain
its benefits is often a time consuming task itself. Also,
operating a complex computing device and/or software
application may only be reserved for expensive and well-
trained computer operators, thereby also incurring additional
cost.

SUMMARY OF THE INVENTION

In some aspects, the disclosure relates to a system for
autonomous application operating. The system may operate
on one or more computing devices. In some embodiments,
the system comprises a computing device including a pro-
cessor circuit that is coupled to a memory unit. The system
may further include an application, running on the processor
circuit, for performing operations on the computing device.
The system may further include an interface configured to
receive a first instruction set and a second instruction set, the
interface further configured to receive a new instruction set,
wherein the first, the second, and the new instruction sets are
executed by the processor circuit and are part of the appli-
cation for performing operations on the computing device.
The system may further include a knowledgebase configured
to store at least one portion of the first instruction set and at
least one portion of the second instruction set, the knowl-
edgebase comprising a plurality of portions of instruction
sets. The system may further include a decision-making unit
configured to: compare at least one portion of the new
instruction set with at least one portion of the first instruction
set from the knowledgebase, and determine that there is a

10

15

20

25

30

35

40

45

50

55

60

65

2

substantial similarity between the new instruction set and the
first instruction set from the knowledgebase. The processor
may be caused to execute the second instruction set from the
knowledgebase.

In certain embodiments, the application includes at least
one of: a software application, an executable program, a web
browser, a word processing application, an operating sys-
tem, a media application, a global positioning system appli-
cation, a game application, a robot control application, a
database application, a software hardcoded on a chip, or a
software hardcoded on a hardware element.

In some embodiments, the first instruction set may be
followed by the second instruction set. In further embodi-
ments, the first instruction set includes a comparative
instruction set whose portions can be used for comparisons
with portions of the new instruction set. In further embodi-
ments, the second instruction set includes an anticipatory
instruction set that can be used for anticipation of an
instruction set subsequent to the new instruction set.

In certain embodiments, each of the first, the second, and
the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto. In further embodiments, each of the first,
the second, and the new instruction set includes a source
code, a bytecode, an intermediate code, a compiled code, an
interpreted code, a translated code, a runtime code, an
assembly code, a structured query language (SQL) code, or
a machine code. In further embodiments, each of the first,
the second, and the new instruction set includes one or more
code segments, lines of code, statements, instructions, func-
tions, routines, subroutines, or basic blocks. In further
embodiments, each of the first, the second, and the new
instruction set includes an absolute or a relative instruction
set.

In some embodiments, the receiving the first, the second,
and the new instruction sets includes obtaining the first, the
second, and the new instruction sets. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets from the processor circuit as the
processor circuit executes them. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes receiving the first, the second, and the new instruc-
tion sets from at least one of: the application, the memory
unit, the processor circuit, the computing device, a virtual
machine, a runtime engine, a hard drive, a storage device, a
peripheral device, a network connected device, or an user. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes receiving the first, the
second, and the new instruction sets at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets used for operating an object of the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation of the application’s
a source code, a bytecode, an intermediate code, a compiled
code, an interpreted code, a translated code, a runtime code,
an assembly code, a structured query language (SQL) code,
or a machine code. In further embodiments, the receiving the
first, the second, and the new instruction sets includes at
least one of: tracing, profiling, or instrumentation of the
memory unit, a register of the processor circuit, a storage, or
a repository where the application’s instruction sets may be

US 9,443,192 Bl

3

stored. In further embodiments, the receiving the first, the
second, and the new instruction sets includes at least one of:
tracing, profiling, or instrumentation of the application or an
object of the application. In further embodiments, the receiv-
ing the first, the second, and the new instruction sets includes
at least one of: tracing, profiling, or instrumentation of the
processor circuit, the computing device, a virtual machine,
a runtime engine, an operating system, an execution stack,
a program counter, or an element used in running the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation at a source code
write time, a compile time, an interpretation time, a trans-
lation time, a linking time, a loading time, or a runtime. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes at least one of: tracing,
profiling, or instrumentation of one or more of the applica-
tion’s code segments, lines of code, statements, instructions,
functions, routines, subroutines, or basic blocks. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes at least one of: tracing, profiling, or
instrumentation of an user input. In further embodiments,
the receiving the first, the second, and the new instruction
sets includes at least one of: a manual, an automatic, a
dynamic, or a just in time (JIT) tracing, profiling, or instru-
mentation of the application. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing at least one of: a .NET tool, a .NET
application programming interface (API), a Java tool, a Java
API, a logging tool, or an independent tool for receiving the
application’s instruction sets. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing an assembly language. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes a branch tracing, or a simulation
tracing.

In certain embodiments, the interface may be further
configured to receive at least one extra information associ-
ated with the first instruction set, at least one extra infor-
mation associated with the second instruction set, and at
least one extra information associated with the new instruc-
tion set. The at least one extra information may include one
or more of: contextual information, time information, geo-
spatial information, environmental information, situational
information, observed information, computed information,
pre-computed information, analyzed information, or
inferred information. The at least one extra information may
include one or more of: an information on an instruction set,
an information on the application, an information on an
object of the application, an information on the computing
device, or an information on an user. The at least one extra
information may include one or more of: a time stamp, an
user specific information, a group specific information, a
version of the application, a type of the application, a type
of'the computing device, or a type of an user. The at least one
extra information may include one or more of: a text
property, a text formatting, a preceding text, or a subsequent
text. The at least one extra information may include one or
more of: a location, a direction, a type, a speed, or a posture
of an object of the application. The at least one extra
information may include one or more of: a relationship, a
distance, or an allegiance of an object of the application
relative to another object of the application. The at least one
extra information may include an information on an object
of the application within an area of interest. In some
embodiments, the receiving the at least one extra informa-
tion includes associating an importance with an extra infor-

10

15

20

25

30

35

40

45

50

55

60

65

4

mation. In further embodiments, the knowledgebase may be
further configured to store the at least one extra information.

In some embodiments, the interface may be further con-
figured to modify the application. The modifying the appli-
cation may include redirecting the application’s execution to
one or more alternate instruction sets, the alternate instruc-
tion sets comprising an anticipatory instruction set. The
modifying the application may include redirecting the appli-
cation’s execution to the second instruction set. The modi-
fying the application may include causing the processor
circuit to execute the second instruction set instead of or
prior to an instruction set that would have followed the new
instruction set. The modifying the application may include
modifying one or more instruction sets of the application.
The modifying the application may include modifying at
least one of the application’s: a source code, a bytecode, an
intermediate code, a compiled code, an interpreted code, a
translated code, a runtime code, an assembly code, or a
machine code. The modifying the application may include
modifying at least one of: the memory unit, a register of the
processor circuit, a storage, or a repository where the appli-
cation’s instruction sets may be stored. The modifying the
application may include modifying instruction sets used for
operating an object of the application. The modifying the
application may include modifying at least one of: an
element of the processor circuit, an element of the comput-
ing device, a virtual machine, a runtime engine, an operating
system, an execution stack, a program counter, or an user
input used in running the application. The modifying the
application may include modifying the application at a
source code write time, a compile time, an interpretation
time, a translation time, a linking time, a loading time, or a
runtime. The modifying the application may include modi-
fying one or more of the application’s code segments, lines
of code, statements, instructions, functions, routines, sub-
routines, or basic blocks. The modifying the application may
include a manual, an automatic, a dynamic, or a just in time
(JIT) instrumentation of the application. The modifying the
application may include utilizing one or more of a .NET
tool, a .NET application programming interface (API), a
Java tool, a Java API, an operating system tool, or an
independent tool for modifying the application. The modi-
fying the application may include utilizing at least one of: a
dynamic, an interpreted, or a scripting programming lan-
guage. The modifying the application may include utilizing
at least one of: a dynamic code, a dynamic class loading, or
a reflection. The modifying the application may include
utilizing an assembly language. The modifying the applica-
tion may include utilizing at least one of: a metaprogram-
ming, a self-modifying code, or an application modification
tool. The modifying the application may include utilizing at
least one of: just in time (JIT) compiling, JIT interpretation,
JIT translation, dynamic recompiling, or binary rewriting.
The moditying the application may include utilizing at least
one of: a dynamic expression creation, a dynamic expression
execution, a dynamic function creation, or a dynamic func-
tion execution. The modifying the application may include
adding or inserting additional code into the application code.
The modifying the application may include at least one of:
modifying, removing, rewriting, or overwriting the applica-
tion code. The modifying the application may include at
least one of: branching, redirecting, extending, or hot swap-
ping the application code. The branching or redirecting the
application code may include inserting at least one of: a
branch, a jump, a trampoline, a trap, or a system for

US 9,443,192 Bl

5

redirecting the application execution. In some embodiments,
the interface may be part of, operating on, or coupled with
the processor circuit.

In certain embodiments, the first instruction set includes
a comparative instruction set whose stored portions can be
used for comparisons with portions of the new instruction
set, and the second instruction set includes an anticipatory
instruction set whose stored portions can be used for antici-
pation of an instruction set subsequent to the new instruction
set. In further embodiments, a portion of the first, the second,
or the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto. In further embodiments, the knowledge-
base includes one or more data structures, objects, files,
tables, databases, database management systems, memory
structures, or repositories. In further embodiments, the stor-
ing the at least one portion of the first instruction set and the
at least one portion of the second instruction set includes
storing the at least one portion of the first instruction set
followed by the at least one portion of the second instruction
set. In further embodiments, the storing the at least one
portion of the first instruction set and the at least one portion
of'the second instruction set includes storing the at least one
portion of the first instruction set and the at least one portion
of the second instruction set into a knowledge cell. The
knowledge cell may include a knowledge cell stored in the
knowledgebase, the knowledgebase comprising one or more
knowledge cells.

In some embodiments, the knowledgebase includes a
remote or a global knowledgebase operating on a remote
computing device. In further embodiments, the knowledge-
base includes one or more user specific or group specific
knowledgebases. In further embodiments, the knowledge-
base includes an artificial intelligence system for knowledge
structuring, storing, or representation. The artificial intelli-
gence system for knowledge structuring, storing, or repre-
sentation may include at least one of: a deep learning
system, a supervised learning system, an unsupervised learn-
ing system, a neural network, a search-based system, an
optimization-based system, a logic-based system, a fuzzy
logic-based system, a tree-based system, a graph-based
system, a hierarchical system, a symbolic system, a sub-
symbolic system, an evolutionary system, a genetic system,
a multi-agent system, a deterministic system, a probabilistic
system, or a statistical system. In further embodiments, the
knowledgebase includes a user’s knowledge, style, or meth-
odology of operating the application or an object of the
application.

In certain embodiments, the plurality of portions of
instruction sets in the knowledgebase include portions of
instruction sets received from a plurality of memory units,
processor circuits, computing devices, virtual machines,
runtime engines, hard drives, storage devices, peripheral
devices, network connected devices, or users via a plurality
of interfaces. In further embodiments, the knowledgebase
may be further configured to store at least one extra infor-
mation associated with the first instruction set and at least
one extra information associated with the second instruction
set. The at least one extra information associated with the
first instruction set may be stored together with the at least
one portion of the first instruction set and the at least one
extra information associated with the second instruction set
may be stored together with the at least one portion of the
second instruction set. In further embodiments, the knowl-
edgebase may be further configured to store an importance
associated with the first instruction set and an importance

20

25

30

40

45

6

associated with the second instruction set. In some embodi-
ments, the knowledgebase may be part of, operating on, or
coupled with the processor circuit.

In certain embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the knowledgebase
includes comparing at least one portion of the new instruc-
tion set with at least one portion of comparative instruction
sets from the knowledgebase, the comparative instruction
sets comprising the first instruction set. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
the portions of their respective instruction sets as separate
strings of characters. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the knowl-
edgebase includes comparing the portions of their respective
instruction sets as combined strings of characters. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
the portions comprising numeric values as numbers. In
further embodiments, the comparing the at least one portion
of the new instruction set with the at least one portion of the
first instruction set from the knowledgebase includes com-
paring the portions factoring in an importance of one or
more of the portions. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the knowl-
edgebase includes comparing the portions factoring in
semantically equivalent variations of one or more of the
portions. In further embodiments, the comparing the at least
one portion of the new instruction set with the at least one
portion of the first instruction set from the knowledgebase
includes comparing the portions factoring in a rating of one
or more of the instruction sets. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the knowledgebase includes comparing an order of a portion
of the new instruction set with an order of a portion of an
instruction set from the knowledgebase. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
at least one portion of the new instruction set with at least
one portion of instruction sets from a knowledge cell, the
knowledge cell stored in the knowledgebase. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the knowledgebase may be part of a
substantial similarity comparison of the new instruction set
with the instruction sets from the knowledgebase. The
substantial similarity comparison may include a comparison
strictness function for adjusting a strictness of the compari-
son.

In certain embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase includes finding
a match between all but a threshold number of portions of
the new instruction set and all but a threshold number of
portions of the first instruction set from the knowledgebase.
In further embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase includes finding
a match between at least one portion of the new instruction
set and at least one portion of the first instruction set from

US 9,443,192 Bl

7

the knowledgebase. In further embodiments, the determin-
ing that there is a substantial similarity between the new
instruction set and the first instruction set from the knowl-
edgebase includes finding a match between important por-
tions of the new instruction set and important portions of the
first instruction set from the knowledgebase. In further
embodiments, the determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the knowledgebase includes determin-
ing that there is a substantial similarity between at least one
portion of the new instruction set and at least one portion of
the first instruction set from the knowledgebase.

In some embodiments, the decision-making unit may be
further configured to compare at least one extra information
associated with the new instruction set with at least one extra
information associated with the first instruction set from the
knowledgebase. The determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the knowledgebase may include finding
a match between all but a threshold number of extra infor-
mation associated with the new instruction set and all but a
threshold number of extra information associated with the
first instruction set from the knowledgebase. The determin-
ing that there is a substantial similarity between the new
instruction set and the first instruction set from the knowl-
edgebase may include finding a match between at least one
extra information associated with the new instruction set and
at least one extra information associated with the first
instruction set from the knowledgebase.

In certain embodiments, the decision-making unit may be
further configured to anticipate the second instruction set.
The anticipating the second instruction set may include
finding the at least one portion of the first instruction set
followed by the at least one portion of the second instruction
set in the knowledgebase. The anticipating the second
instruction set may include finding a knowledge cell com-
prising the at least one portion of the first instruction set
followed by the at least one portion of the second instruction
set. The anticipating the second instruction set may include
inferring that the second instruction set is an instruction set
to be executed following the new instruction set. The
anticipating the second instruction set includes causing the
processor circuit to execute the second instruction set prior
to an instruction set that would have followed the new
instruction set.

In some embodiments, the decision-making unit may be
further configured to generate a comparison accuracy index,
the comparison accuracy index indicating a similarity
between the new instruction set and the first instruction set
from the knowledgebase. In further embodiments, the deci-
sion-making unit may be further configured to analyze a
contextual information, the contextual information includ-
ing at least one of: information about the first, the second, or
the new instruction set, information about the application or
an object of the application, information about the comput-
ing device, or information useful in the comparing the at
least one portion of the new instruction set with the at least
one portion of the first instruction set from the knowledge-
base. In certain embodiments, the decision-making unit may
be part of, operating on, or coupled with the processor
circuit.

In some embodiments, the executing the second instruc-
tion set from the knowledgebase includes performing an
operation defined by the second instruction set from the
knowledgebase. An operation defined by the second instruc-
tion set from the knowledgebase may include at least one of:
an operation of a forms-based application, an operation of a

10

15

20

25

30

35

40

45

50

55

60

65

8

web browser, an operation of an operating system, an
operation of a word processing application, an operation of
a media application, an operation of a global positioning
system (GPS) application, an operation of a game applica-
tion, an operation of a robot control application, or an
operation of a database application. In further embodiments,
the executing the second instruction set from the knowl-
edgebase includes executing the second instruction set from
the knowledgebase in response to the determining that there
is a substantial similarity between the new instruction set
and the first instruction set from the knowledgebase. In
further embodiments, the executing the second instruction
set from the knowledgebase includes implementing a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application, the user’s knowledge,
style, or methodology of operating the application or an
object of the application represented by the instructions sets
stored in the knowledgebase. In further embodiments, the
executing the second instruction set from the knowledgebase
includes executing a modified second instruction set from
the knowledgebase. In further embodiments, the executing
the second instruction set from the knowledgebase includes
executing an external application or process.

In some embodiments, the system further comprises: a
command disassembler configured to disassemble the first,
the second, and the new instruction sets into their portions.
The disassembling the first, the second, and the new instruc-
tion sets into their portions may include identifying at least
one of: a command, a keyword, a symbol, an instruction, an
operator, a variable, a value, an object, a function, a param-
eter, a character, or a digit of the first, the second, and the
new instruction sets as a portion. The disassembling the first,
the second, and the new instruction sets into their portions
may include identifying types of the first, the second, and the
new instruction sets. The disassembling the first, the second,
and the new instruction sets into their portions may include
associating an importance with a portion of the first, the
second, and the new instruction sets. The command disas-
sembler may be part of, operating on, or coupled with the
processor circuit.

In further embodiments, the system further comprises: a
modifier configured to modify the second instruction set.
The modifying the second instruction set may include
replacing at least one portion of the second instruction set
with at least one portion of the first, the new, or an another
instruction set. The modifying the second instruction set
may include replacing at least one portion of the second
instruction set with a command, a keyword, a symbol, an
instruction, an operator, a variable, a value, an object, a
function, a parameter, a character, or a digit from the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one
portion of the second instruction set with at least one extra
information associated with the first, the new, or an another
instruction set. The modifying the second instruction set
may include replacing at least one portion of the second
instruction set with a contextual information, a time infor-
mation, a geo-spatial information, an environmental infor-
mation, a situational information, an observed information,
a computed information, a pre-computed information, an
analyzed information, or an inferred information. The modi-
fying the second instruction set may include replacing at
least one portion of the second instruction set with infor-
mation derived from projecting a path, a movement, a
trajectory, or a pattern in portions of one or more of the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one

US 9,443,192 Bl

9

portion of the second instruction set with semantically
equivalent variations of at least one portion of the first, the
new, or an another instruction set. The modifying the second
instruction set may include replacing the second instruction
set with an instruction set generated by a non-UAIE system
or process. In some embodiments, the modifier may be part
of, operating on, or coupled with the processor circuit.

In certain embodiments, the system further comprises: a
display configured to display the second instruction set as an
option to be selected, modified, or canceled by a user. The
displaying the second instruction set as an option to be
selected, modified, or canceled by a user may include
displaying a comparison accuracy indicating a similarity
between the new instruction set and the first instruction set
from the knowledgebase. The second instruction set may
include a previously modified second instruction set.

In some embodiments, the system further comprises: a
rating system configured to rate the executed second instruc-
tion set. The rating the executed second instruction set may
include displaying the executed second instruction set along
with one or more rating values as options to be selected by
a user. The rating the executed second instruction set may
include automatically rating the executed second instruction
set. The rating the executed second instruction set may
include associating a rating value with the executed second
instruction set and storing the rating value in the knowl-
edgebase. The executed second instruction set may include
a previously modified second instruction set. In further
embodiments, the rating system may be part of, operating
on, or coupled with the processor circuit.

In certain embodiments, the system further comprises: a
cancelation system configured to cancel the execution of the
executed second instruction set. The canceling the execution
of the executed second instruction set may include display-
ing the executed second instruction set as an option to be
selected for cancelation by a user. The canceling the execu-
tion of the executed second instruction set may include
associating a cancelation with the executed second instruc-
tion set and storing the cancelation in the knowledgebase.
The canceling the execution of the executed second instruc-
tion set may include restoring the computing device to a
prior state. The restoring the computing device to a prior
state may include saving the state of the computing device
prior to executing the second instruction set. The executed
second instruction set may include a previously modified
second instruction set. In further embodiments, the cancel-
ation system may be part of, operating on, or coupled with
the processor circuit.

In some embodiments, the system further comprises: a
command assembler configured to assemble the second
instruction set from its portions. In further embodiments, the
command assembler may be part of, operating on, or
coupled with the processor circuit.

In certain embodiments, the system further comprises: a
knowledge structuring unit configured to create a knowledge
cell, the knowledge cell comprising the at least one portion
of the first instruction set and the at least one portion of the
second instruction set. The at least one portion of the first
instruction set may be followed by the at least one portion
of the second instruction set. In further embodiments, the
knowledge structuring unit may be further configured to
cause a storing of the knowledge cell into knowledgebase,
the knowledgebase comprising one or more knowledge
cells. In further embodiments, the knowledge cell comprises
at least one portion of one or more comparative instruction
sets, the one or more comparative instruction sets including
one or more least recently executed instruction sets from a

10

15

20

25

30

35

40

45

50

55

60

65

10

plurality of recently executed instruction sets. The one or
more comparative instruction sets may include the first
instruction set. In further embodiments, the knowledge cell
comprises at least one portion of one or more anticipatory
instruction sets, the one or more anticipatory instruction sets
including one or more most recently executed instruction
sets from a plurality of recently executed instruction sets.
The one or more anticipatory instruction sets may include
the second instruction set. The knowledge cell may include
a user’s knowledge, style, or methodology of operating the
application or an object of the application. In further
embodiments, the knowledge structuring unit may be part
of, operating on, or coupled with the processor circuit.

In some embodiments, the system further comprises: an
universal artificial intelligence engine (UAIE) for autono-
mous application operating. In further embodiments, the
UAIE comprises at least one of: the interface, the knowl-
edgebase, the decision-making unit, a command disassem-
bler, a collection of recently executed instruction sets, a
knowledge structuring unit, a modifier, a command assem-
bler, a rating system, or a cancelation system. In further
embodiments, the autonomous application operating
includes a partially or a fully autonomous application oper-
ating. The partially autonomous application operating may
include executing the second instruction set or a modified
second instruction set responsive to a confirmation by a user.
The fully autonomous application operating may include
executing the second instruction set or a modified second
instruction set without a confirmation. In further embodi-
ments, the autonomous application operating includes
executing one or more instruction sets generated by the
UAIE. The one or more instruction sets generated by the
UAIE may include the second instruction set or a modified
second instruction set. The one or more instruction sets
generated by the UAIE may include one or more instruction
sets for operating the application or an object of the appli-
cation. The one or more instruction sets generated by the
UAIE may include one or more instruction sets stored in the
knowledgebase. In further embodiments, the autonomous
application operating includes automatic or auto-pilot oper-
ating. The automatic or auto-pilot operating may include
executing one or more instruction sets generated by the
UAIE. In further embodiments, the autonomous application
operating includes executing one or more instruction sets
generated by a non-UAIE system or process.

In certain embodiments, the UAIE includes an UAIE that
operates independently from the computing device. In fur-
ther embodiments, the UAIE includes an UAIE attachable to
the computing device. In further embodiments, the UAIE
includes an UAIE built into the computing device. In further
embodiments, the UAIE includes an UAIE that operates
independently from the application. In further embodiments,
the UAIE includes an UAIE attachable to the application. In
further embodiments, the UAIE includes an UAIE built into
the application. In further embodiments, the UAIE includes
an UAIE provided as a feature of the computing device’s
operating system. In further embodiments, the application
includes an application running on the computing device and
the UAIE includes an UAIE running on a remote computing
device. In further embodiments, the UAIE includes an UAIE
running on the computing device and the application
includes an application running on a remote computing
device. In further embodiments, the UAIE includes a remote
or a global UAIE operating on a remote computing device.
In further embodiments, the UAIE may be configured to
load one or more instruction sets into the knowledgebase. In
further embodiments, the UAIE may be configured to load

US 9,443,192 Bl

11

one or more knowledge cells into the knowledgebase. In
further embodiments, the UAIE may be configured to load
one or more knowledgebases into the UAIE. In further
embodiments, the UAIE may be configured to take control
from, share control with, or release control to the application
or an object of the application. In further embodiments, the
UAIE may be configured to learn a user’s knowledge, style,
or methodology of operating the application or an object of
the application. The learning a user’s knowledge, style, or
methodology of operating the application or an object of the
application may include storing the at least one portion of
the first instruction set and the at least one portion of the
second instruction set into the knowledgebase. In further
embodiments, the UAIE may be part of, operating on, or
coupled with the processor circuit.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that
when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: receiving a first instruction set and a second instruc-
tion set, wherein the first and the second instruction sets are
executed by a processor circuit and are part of an application
for performing operations on a computing device. The
operations may further include storing at least one portion of
the first instruction set and at least one portion of the second
instruction set into a knowledgebase, the knowledgebase
comprising a plurality of portions of instruction sets. The
operations may further include receiving a new instruction
set, wherein the new instruction set is executed by the
processor circuit and is part of the application for perform-
ing operations on the computing device. The operations may
further include comparing at least one portion of the new
instruction set with at least one portion of the first instruction
set from the knowledgebase. The operations may further
include determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the knowledgebase. The operations may further
include causing the processor circuit to execute the second
instruction set from the knowledgebase.

In some aspects, the disclosure relates to a method com-
prising: (a) receiving, by a processor circuit via an interface,
a first instruction set and a second instruction set, wherein
the first and the second instruction sets are executed by the
processor circuit and are part of an application for perform-
ing operations on a computing device. The method may
further include (b) storing at least one portion of the first
instruction set and at least one portion of the second instruc-
tion set into a knowledgebase, the knowledgebase compris-
ing a plurality of portions of instruction sets, the storing of
(b) caused by the processor circuit. The method may further
include (c) receiving, by the processor circuit via the inter-
face, a new instruction set, wherein the new instruction set
is executed by the processor circuit and is part of the
application for performing operations on the computing
device, The method may further include (d) comparing at
least one portion of the new instruction set with at least one
portion of the first instruction set from the knowledgebase,
the comparing of (d) performed by the processor circuit. The
method may further include (e) determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase, the determining
of (e) performed by the processor circuit. The method may
further include executing the second instruction set from the
knowledgebase by the processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by

10

15

20

25

30

35

40

45

50

55

60

65

12

any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In certain embodiments, the application includes at least
one of: a software application, an executable program, a web
browser, a word processing application, an operating sys-
tem, a media application, a global positioning system appli-
cation, a game application, a robot control application, a
database application, a software hardcoded on a chip, or a
software hardcoded on a hardware element.

In some embodiments, the first instruction set may be
followed by the second instruction set. In further embodi-
ments, the first instruction set includes a comparative
instruction set whose portions can be used for comparisons
with portions of the new instruction set. In further embodi-
ments, the second instruction set includes an anticipatory
instruction set that can be used for anticipation of an
instruction set subsequent to the new instruction set.

In some embodiments, the first, the second, and the new
instruction set includes one or more commands, keywords,
symbols, instructions, operators, variables, values, objects,
functions, parameters, characters, digits, or references
thereto. In further embodiments, each of the first, the second,
and the new instruction set includes a source code, a
bytecode, an intermediate code, a compiled code, an inter-
preted code, a translated code, a runtime code, an assembly
code, a structured query language (SQL) code, or a machine
code. In further embodiments, each of the first, the second,
and the new instruction set includes one or more code
segments, lines of code, statements, instructions, functions,
routines, subroutines, or basic blocks. In further embodi-
ments, each of the first, the second, and the new instruction
set includes an absolute or a relative instruction set.

In certain embodiments, the receiving the first, the sec-
ond, and the new instruction sets includes obtaining the first,
the second, and the new instruction sets. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets from the processor circuit as the
processor circuit executes them. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes receiving the first, the second, and the new instruc-
tion sets from at least one of: the application, the memory
unit, the processor circuit, the computing device, a virtual
machine, a runtime engine, a hard drive, a storage device, a
peripheral device, a network connected device, or an user. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes receiving the first, the
second, and the new instruction sets at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets used for operating an object of the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation of the application’s
a source code, a bytecode, an intermediate code, a compiled
code, an interpreted code, a translated code, a runtime code,
an assembly code, a structured query language (SQL) code,
or a machine code. In further embodiments, the receiving the
first, the second, and the new instruction sets includes at
least one of: tracing, profiling, or instrumentation of the
memory unit, a register of the processor circuit, a storage, or
a repository where the application’s instruction sets may be

US 9,443,192 Bl

13

stored. In further embodiments, the receiving the first, the
second, and the new instruction sets includes at least one of:
tracing, profiling, or instrumentation of the application or an
object of the application. In further embodiments, the receiv-
ing the first, the second, and the new instruction sets includes
at least one of: tracing, profiling, or instrumentation of the
processor circuit, the computing device, a virtual machine,
a runtime engine, an operating system, an execution stack,
a program counter, or an element used in running the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation at a source code
write time, a compile time, an interpretation time, a trans-
lation time, a linking time, a loading time, or a runtime. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes at least one of: tracing,
profiling, or instrumentation of one or more of the applica-
tion’s code segments, lines of code, statements, instructions,
functions, routines, subroutines, or basic blocks. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes at least one of: tracing, profiling, or
instrumentation of an user input. In further embodiments,
the receiving the first, the second, and the new instruction
sets includes at least one of: a manual, an automatic, a
dynamic, or a just in time (JIT) tracing, profiling, or instru-
mentation of the application. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing at least one of: a .NET tool, a .NET
application programming interface (API), a Java tool, a Java
API, a logging tool, or an independent tool for receiving the
application’s instruction sets. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing an assembly language. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes a branch tracing, or a simulation
tracing.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving
at least one extra information associated with the first
instruction set, at least one extra information associated with
the second instruction set, and at least one extra information
associated with the new instruction set. The at least one extra
information may include one or more of: contextual infor-
mation, time information, geo-spatial information, environ-
mental information, situational information, observed infor-
mation, computed information, pre-computed information,
analyzed information, or inferred information. The at least
one extra information may include one or more of: an
information on an instruction set, an information on the
application, an information on an object of the application,
an information on the computing device, or an information
on an user. The at least one extra information may include
one or more of: a time stamp, an user specific information,
a group specific information, a version of the application, a
type of the application, a type of the computing device, or a
type of an user. The at least one extra information may
include one or more of: a text property, a text formatting, a
preceding text, or a subsequent text. The at least one extra
information may include one or more of: a location, a
direction, a type, a speed, or a posture of an object of the
application. The at least one extra information may include
one or more of: a relationship, a distance, or an allegiance of
an object of the application relative to another object of the
application. The at least one extra information may include
an information on an object of the application within an area
of interest. In further embodiments, the receiving the at least
one extra information includes associating an importance

10

15

20

25

30

35

40

45

50

55

60

65

14

with an extra information. In certain embodiments, the
non-transitory computer storage medium and/or the method
further comprise: storing the at least one extra information
into the knowledgebase.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: modifying
the application. The modifying the application may include
redirecting the application’s execution to one or more alter-
nate instruction sets, the alternate instruction sets compris-
ing an anticipatory instruction set. The modifying the appli-
cation may include redirecting the application’s execution to
the second instruction set. The modifying the application
may include causing the processor circuit to execute the
second instruction set instead of or prior to an instruction set
that would have followed the new instruction set. The
modifying the application may include moditying one or
more instruction sets of the application. The modifying the
application may include modifying at least one of the
application’s: a source code, a bytecode, an intermediate
code, a compiled code, an interpreted code, a translated
code, a runtime code, an assembly code, or a machine code.
The modifying the application may include modifying at
least one of: the memory unit, a register of the processor
circuit, a storage, or a repository where the application’s
instruction sets may be stored. The modifying the applica-
tion may include modifying instruction sets used for oper-
ating an object of the application. The modifying the appli-
cation may include modifying at least one of: an element of
the processor circuit, an element of the computing device, a
virtual machine, a runtime engine, an operating system, an
execution stack, a program counter, or an user input used in
running the application. The modifying the application may
include modifying the application at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. The
modifying the application may include moditying one or
more of the application’s code segments, lines of code,
statements, instructions, functions, routines, subroutines, or
basic blocks. The modifying the application may include a
manual, an automatic, a dynamic, or a just in time (JIT)
instrumentation of the application. The modifying the appli-
cation may include utilizing one or more of a .NET tool,
a NET application programming interface (API), a Java
tool, a Java API, an operating system tool, or an independent
tool for modifying the application. The modifying the appli-
cation may include utilizing at least one of: a dynamic, an
interpreted, or a scripting programming language. The modi-
fying the application may include utilizing at least one of: a
dynamic code, a dynamic class loading, or a reflection. The
modifying the application may include utilizing an assembly
language. The modifying the application may include uti-
lizing at least one of: a metaprogramming, a self-modifying
code, or an application modification tool. The modifying the
application may include utilizing at least one of: just in time
(JIT) compiling, JIT interpretation, JIT translation, dynamic
recompiling, or binary rewriting. The modifying the appli-
cation may include utilizing at least one of: a dynamic
expression creation, a dynamic expression execution, a
dynamic function creation, or a dynamic function execution.
The modifying the application may include adding or insert-
ing additional code into the application code. The modifying
the application may include at least one of: modifying,
removing, rewriting, or overwriting the application code.
The modifying the application may include at least one of:
branching, redirecting, extending, or hot swapping the appli-
cation code. The branching or redirecting the application
code may include inserting at least one of: a branch, a jump,

US 9,443,192 Bl

15

a trampoline, a trap, or a system for redirecting the appli-
cation execution. In further embodiments, the modifying the
application may be performed by the processor circuit.

In some embodiments, the first instruction set includes a
comparative instruction set whose stored portions can be
used for comparisons with portions of the new instruction
set, and the second instruction set includes an anticipatory
instruction set whose stored portions can be used for antici-
pation of an instruction set subsequent to the new instruction
set. In further embodiments, a portion of the first, the second,
or the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto. In further embodiments, the knowledge-
base includes one or more data structures, objects, files,
tables, databases, database management systems, memory
structures, or repositories.

In certain embodiments, the storing the at least one
portion of the first instruction set and the at least one portion
of'the second instruction set includes storing the at least one
portion of the first instruction set followed by the at least one
portion of the second instruction set. In further embodi-
ments, the storing the at least one portion of the first
instruction set and the at least one portion of the second
instruction set includes storing the at least one portion of the
first instruction set and the at least one portion of the second
instruction set into a knowledge cell. The knowledge cell
may include a knowledge cell stored in the knowledgebase,
the knowledgebase comprising one or more knowledge
cells.

In some embodiments, the knowledgebase includes a
remote or a global knowledgebase operating on a remote
computing device. In further embodiments, the knowledge-
base includes one or more user specific or group specific
knowledgebases. In further embodiments, the knowledge-
base includes an artificial intelligence system for knowledge
structuring, storing, or representation. The artificial intelli-
gence system for knowledge structuring, storing, or repre-
sentation may include at least one of: a deep learning
system, a supervised learning system, an unsupervised learn-
ing system, a neural network, a search-based system, an
optimization-based system, a logic-based system, a fuzzy
logic-based system, a tree-based system, a graph-based
system, a hierarchical system, a symbolic system, a sub-
symbolic system, an evolutionary system, a genetic system,
a multi-agent system, a deterministic system, a probabilistic
system, or a statistical system. In further embodiments, the
knowledgebase includes a user’s knowledge, style, or meth-
odology of operating the application or an object of the
application. In further embodiments, the plurality of portions
of instruction sets in the knowledgebase include portions of
instruction sets received from a plurality of memory units,
processor circuits, computing devices, virtual machines,
runtime engines, hard drives, storage devices, peripheral
devices, network connected devices, or users via a plurality
of interfaces.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: storing at
least one extra information associated with the first instruc-
tion set and at least one extra information associated with the
second instruction set into the knowledgebase. The at least
one extra information associated with the first instruction set
may be stored together with the at least one portion of the
first instruction set and the at least one extra information
associated with the second instruction set may be stored
together with the at least one portion of the second instruc-
tion set.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: storing an
importance associated with the first instruction set and an
importance associated with the second instruction set into
the knowledgebase.

In certain embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the knowledgebase
includes comparing at least one portion of the new instruc-
tion set with at least one portion of comparative instruction
sets from the knowledgebase, the comparative instruction
sets comprising the first instruction set. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
the portions of their respective instruction sets as separate
strings of characters. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the knowl-
edgebase includes comparing the portions of their respective
instruction sets as combined strings of characters. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
the portions comprising numeric values as numbers. In
further embodiments, the comparing the at least one portion
of the new instruction set with the at least one portion of the
first instruction set from the knowledgebase includes com-
paring the portions factoring in an importance of one or
more of the portions. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the knowl-
edgebase includes comparing the portions factoring in
semantically equivalent variations of one or more of the
portions. In further embodiments, the comparing the at least
one portion of the new instruction set with the at least one
portion of the first instruction set from the knowledgebase
includes comparing the portions factoring in a rating of one
or more of the instruction sets. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the knowledgebase includes comparing an order of a portion
of the new instruction set with an order of a portion of an
instruction set from the knowledgebase. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the knowledgebase includes comparing
at least one portion of the new instruction set with at least
one portion of instruction sets from a knowledge cell, the
knowledge cell stored in the knowledgebase. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the knowledgebase may be part of a
substantial similarity comparison of the new instruction set
with the instruction sets from the knowledgebase. The
substantial similarity comparison may include a comparison
strictness function for adjusting a strictness of the compari-
son.

In certain embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase includes finding
a match between all but a threshold number of portions of
the new instruction set and all but a threshold number of
portions of the first instruction set from the knowledgebase.
In further embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase includes finding

US 9,443,192 Bl

17

a match between at least one portion of the new instruction
set and at least one portion of the first instruction set from
the knowledgebase. In further embodiments, the determin-
ing that there is a substantial similarity between the new
instruction set and the first instruction set from the knowl-
edgebase includes finding a match between important por-
tions of the new instruction set and important portions of the
first instruction set from the knowledgebase. In further
embodiments, the determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the knowledgebase includes determin-
ing that there is a substantial similarity between at least one
portion of the new instruction set and at least one portion of
the first instruction set from the knowledgebase.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: comparing
at least one extra information associated with the new
instruction set with at least one extra information associated
with the first instruction set from the knowledgebase. The
determining that there is a substantial similarity between the
new instruction set and the first instruction set from the
knowledgebase may include finding a match between all but
a threshold number of extra information associated with the
new instruction set and all but a threshold number of extra
information associated with the first instruction set from the
knowledgebase. The determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the knowledgebase may include finding
a match between at least one extra information associated
with the new instruction set and at least one extra informa-
tion associated with the first instruction set from the knowl-
edgebase.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: anticipat-
ing the second instruction set. The anticipating the second
instruction set may include finding the at least one portion of
the first instruction set followed by the at least one portion
of the second instruction set in the knowledgebase. The
anticipating the second instruction set may include finding a
knowledge cell comprising the at least one portion of the
first instruction set followed by the at least one portion of the
second instruction set. The anticipating the second instruc-
tion set may include inferring that the second instruction set
is an instruction set to be executed following the new
instruction set. The anticipating the second instruction set
may include causing the processor circuit to execute the
second instruction set prior to an instruction set that would
have followed the new instruction set. In further embodi-
ments, the anticipating the second instruction set may be
performed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: generating
a comparison accuracy index, the comparison accuracy
index indicating a similarity between the new instruction set
and the first instruction set from the knowledgebase.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: analyzing
a contextual information, the contextual information includ-
ing at least one of: information about the first, the second, or
the new instruction set, information about the application or
an object of the application, information about the comput-
ing device, or information useful in the comparing the at
least one portion of the new instruction set with the at least
one portion of the first instruction set from the knowledge-
base.

In some embodiments, the executing the second instruc-
tion set from the knowledgebase includes performing an

10

15

20

25

30

35

40

45

50

55

60

65

18

operation defined by the second instruction set from the
knowledgebase. An operation defined by the second instruc-
tion set from the knowledgebase may include at least one of:
an operation of a forms-based application, an operation of a
web browser, an operation of an operating system, an
operation of a word processing application, an operation of
a media application, an operation of a global positioning
system (GPS) application, an operation of a game applica-
tion, an operation of a robot control application, or an
operation of a database application. In further embodiments,
the executing the second instruction set from the knowl-
edgebase includes executing the second instruction set from
the knowledgebase in response to the determining that there
is a substantial similarity between the new instruction set
and the first instruction set from the knowledgebase. In
further embodiments, the executing the second instruction
set from the knowledgebase includes implementing a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application, the user’s knowledge,
style, or methodology of operating the application or an
object of the application represented by the instructions sets
stored in the knowledgebase. In further embodiments, the
executing the second instruction set from the knowledgebase
includes executing a modified second instruction set from
the knowledgebase. In further embodiments, the executing
the second instruction set from the knowledgebase includes
executing an external application or process.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: disassem-
bling the first, the second, and the new instruction sets into
their portions. The disassembling the first, the second, and
the new instruction sets into their portions may include
identifying at least one of: a command, a keyword, a symbol,
an instruction, an operator, a variable, a value, an object, a
function, a parameter, a character, or a digit of the first, the
second, and the new instruction sets as a portion. The
disassembling the first, the second, and the new instruction
sets into their portions may include identifying types of the
first, the second, and the new instruction sets. The disas-
sembling the first, the second, and the new instruction sets
into their portions may include associating an importance
with a portion of the first, the second, and the new instruc-
tion sets. The disassembling the first, the second, and the
new instruction sets into their portions may be performed by
the processor circuit.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: modifying
the second instruction set. The modifying the second instruc-
tion set may include replacing at least one portion of the
second instruction set with at least one portion of the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one
portion of the second instruction set with a command, a
keyword, a symbol, an instruction, an operator, a variable, a
value, an object, a function, a parameter, a character, or a
digit from the first, the new, or an another instruction set.
The modifying the second instruction set may include
replacing at least one portion of the second instruction set
with at least one extra information associated with the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one
portion of the second instruction set with a contextual
information, a time information, a geo-spatial information,
an environmental information, a situational information, an
observed information, a computed information, a pre-com-
puted information, an analyzed information, or an inferred
information. The modifying the second instruction set may

US 9,443,192 Bl

19

include replacing at least one portion of the second instruc-
tion set with information derived from projecting a path, a
movement, a trajectory, or a pattern in portions of one or
more of the first, the new, or an another instruction set. The
modifying the second instruction set may include replacing
at least one portion of the second instruction set with
semantically equivalent variations of at least one portion of
the first, the new, or an another instruction set. The modi-
fying the second instruction set may include replacing the
second instruction set with an instruction set generated by a
non-UAIE system or process. The modifying the second
instruction set may be performed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: displaying
the second instruction set as an option to be selected,
modified, or canceled by a user. The displaying the second
instruction set as an option to be selected, modified, or
canceled by a user may include displaying a comparison
accuracy indicating a similarity between the new instruction
set and the first instruction set from the knowledgebase. The
second instruction set may include a previously modified
second instruction set.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: rating the
executed second instruction set. The rating the executed
second instruction set may include displaying the executed
second instruction set along with one or more rating values
as options to be selected by a user. The rating the executed
second instruction set may include automatically rating the
executed second instruction set. The rating the executed
second instruction set may include associating a rating value
with the executed second instruction set and storing the
rating value in the knowledgebase. The executed second
instruction set may include a previously modified second
instruction set. The rating the executed second instruction
set may be performed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: canceling
the execution of the executed second instruction set. The
canceling the execution of the executed second instruction
set may include displaying the executed second instruction
set as an option to be selected for cancelation by a user. The
canceling the execution of the executed second instruction
set may include associating a cancelation with the executed
second instruction set and storing the cancelation in the
knowledgebase. The canceling the execution of the executed
second instruction set may include restoring the computing
device to a prior state. The restoring the computing device
to a prior state may include saving the state of the computing
device prior to executing the second instruction set. The
executed second instruction set may include a previously
modified second instruction set. The canceling the execution
of the executed second instruction set may be performed by
the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: assembling
the second instruction set from its portions. The assembling
the second instruction set from its portions may be per-
formed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: creating a
knowledge cell, the knowledge cell comprising the at least
one portion of the first instruction set and the at least one
portion of the second instruction set. The at least one portion
of'the first instruction set may be followed by the at least one
portion of the second instruction set. In some embodiments,
the non-transitory computer storage medium and/or the

40

45

50

20

method further comprise: storing the knowledge cell into
knowledgebase, the knowledgebase comprising one or more
knowledge cells. In further embodiments, the knowledge
cell comprises at least one portion of one or more compara-
tive instruction sets, the one or more comparative instruction
sets including one or more least recently executed instruc-
tion sets from a plurality of recently executed instruction
sets. The one or more comparative instruction sets may
include the first instruction set. In further embodiments, the
knowledge cell comprises at least one portion of one or more
anticipatory instruction sets, the one or more anticipatory
instruction sets including one or more most recently
executed instruction sets from a plurality of recently
executed instruction sets. The one or more anticipatory
instruction sets may include the second instruction set. In
further embodiments, the knowledge cell includes a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application. The creating the knowl-
edge cell may be performed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: an autono-
mous operating of the application caused by an universal
artificial intelligence engine (UAIE). In further embodi-
ments, the UAIE comprises at least one of: the interface, the
knowledgebase, a decision-making unit, a command disas-
sembler, a collection of recently executed instruction sets, a
knowledge structuring unit, a modifier, a command assem-
bler, a rating system, or a cancelation system. In further
embodiments, the autonomous application operating
includes a partially or a fully autonomous application oper-
ating. The partially autonomous application operating may
include executing the second instruction set or a modified
second instruction set responsive to a confirmation by a user.
The fully autonomous application operating may include
executing the second instruction set or a modified second
instruction set without a confirmation. In further embodi-
ments, the autonomous application operating includes
executing one or more instruction sets generated by the
UAIE. The one or more instruction sets generated by the
UAIE may include the second instruction set or a modified
second instruction set. The one or more instruction sets
generated by the UAIE may include one or more instruction
sets for operating the application or an object of the appli-
cation. The one or more instruction sets generated by the
UAIE may include one or more instruction sets stored in the
knowledgebase. In further embodiments, the autonomous
application operating includes automatic or auto-pilot oper-
ating. The automatic or auto-pilot operating may include
executing one or more instruction sets generated by the
UAIE. In further embodiments, the autonomous application
operating includes executing one or more instruction sets
generated by a non-UAIE system or process.

In some embodiments, the UAIE includes an UAIE that
operates independently from the computing device. In fur-
ther embodiments, the UAIE includes an UAIE attachable to
the computing device. In further embodiments, the UAIE
includes an UAIE built into the computing device. In further
embodiments, the UAIE includes an UAIE that operates
independently from the application. In further embodiments,
the UAIE includes an UAIE attachable to the application. In
further embodiments, the UAIE includes an UAIE built into
the application. In further embodiments, the UAIE includes
an UAIE provided as a feature of the computing device’s
operating system. In further embodiments, the application
includes an application running on the computing device and
the UAIE includes an UAIE running on a remote computing
device. In further embodiments, the UAIE includes an UAIE

US 9,443,192 Bl

21

running on the computing device and the application
includes an application running on a remote computing
device. In further embodiments, the UAIE includes a remote
or a global UAIE operating on a remote computing device.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: loading
one or more instruction sets into the knowledgebase by
UAIE. In some embodiments, the non-transitory computer
storage medium and/or the method further comprise: loading
one or more knowledge cells into the knowledgebase by
UAIE. In certain embodiments, the non-transitory computer
storage medium and/or the method further comprise: loading
one or more knowledgebases into the UAIE. In some
embodiments, the non-transitory computer storage medium
and/or the method further comprise: taking control from,
sharing control with, or releasing control to the application
or an object of the application, the taking, sharing, or
releasing control performed by the UAIE. In certain embodi-
ments, the non-transitory computer storage medium and/or
the method further comprise: learning a user’s knowledge,
style, or methodology of operating the application or an
object of the application by the UAIE. The learning a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application may include storing the
at least one portion of the first instruction set and the at least
one portion of the second instruction set into the knowl-
edgebase. The operation of the UAIE may be performed by
the processor circuit.

In some aspects, the disclosure relates to a system for
learning an application’s operations. The system may oper-
ate on one or more computing devices. In some embodi-
ments, the system comprises a computing device including
a processor circuit that is coupled to a memory unit. The
system may further include an application, running on the
processor circuit, for performing operations on the comput-
ing device. The system may further include an interface
configured to receive a plurality of recently executed
instruction sets, the plurality of recently executed instruction
sets comprise instruction sets executed immediately prior to
and including a currently executed instruction set, wherein
the plurality of recently executed instruction sets are part of
the application for performing operations on the computing
device. The system may further include a knowledgebase
configured to store portions of comparative instruction sets
and portions of anticipatory instruction sets, the knowledge-
base comprising a plurality of portions of comparative
instruction sets and portions of anticipatory instruction sets,
wherein the comparative instruction sets include the least
recently executed instruction sets of the plurality of recently
executed instruction sets and the anticipatory instruction sets
include the most recently executed instruction sets of the
plurality of recently executed instruction sets.

In some embodiments, the interface may be further con-
figured to receive at least one extra information associated
with the plurality of recently executed instruction sets. The
knowledgebase may be further configured to store the at
least one extra information associated with the comparative
instruction sets and store the at least one extra information
associated with the anticipatory instruction sets. The knowl-
edgebase may be further configured to store the at least one
extra information associated with the comparative instruc-
tion sets together with the portions of the comparative
instruction sets, and store the at least one extra information
associated with the anticipatory instruction sets together
with the portions of the anticipatory instruction sets.

In certain embodiments, the storing portions of compara-
tive instruction sets and portions of anticipatory instruction

30

40

45

55

22

sets includes storing portions of comparative instruction sets
followed by portions of anticipatory instruction sets. In
further embodiments, the comparative instruction sets
include one or more comparative instruction sets and the
anticipatory instruction sets include one or more anticipatory
instruction sets. In further embodiments, the comparative
instruction sets include instruction sets whose portions can
be used for comparisons with portions of new instruction
sets, and the anticipatory instruction sets include instruction
sets whose portions can be used for anticipation of instruc-
tion sets subsequent to the new instruction sets. In further
embodiments, the storing portions of comparative instruc-
tion sets and portions of anticipatory instruction sets
includes storing portions of comparative instruction sets and
portions of anticipatory instruction sets into a knowledge
cell. The knowledge cell includes a knowledge cell stored in
the knowledgebase, the knowledgebase comprising one or
more knowledge cells.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that
when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: receiving a plurality of recently executed instruction
sets, the plurality of recently executed instruction sets com-
prise instruction sets executed immediately prior to and
including a currently executed instruction set, wherein the
plurality of recently executed instruction sets are part of an
application for performing operations on a computing
device. The operations may further include storing portions
of comparative instruction sets and portions of anticipatory
instruction sets into a knowledgebase, the knowledgebase
comprising a plurality of portions of comparative instruction
sets and portions of anticipatory instruction sets, wherein the
comparative instruction sets include the least recently
executed instruction sets of the plurality of recently executed
instruction sets and the anticipatory instruction sets include
the most recently executed instruction sets of the plurality of
recently executed instruction sets.

In some aspects, the disclosure relates to a method com-
prising: (a) receiving, by a processor circuit via an interface,
a plurality of recently executed instruction sets, the plurality
of recently executed instruction sets comprise instruction
sets executed immediately prior to and including a currently
executed instruction set, wherein the plurality of recently
executed instruction sets are part of an application for
performing operations on a computing device. The method
may further include (b) storing portions of comparative
instruction sets and portions of anticipatory instruction sets
into a knowledgebase, the knowledgebase comprising a
plurality of portions of comparative instruction sets and
portions of anticipatory instruction sets, wherein the com-
parative instruction sets include the least recently executed
instruction sets of the plurality of recently executed instruc-
tion sets and the anticipatory instruction sets include the
most recently executed instruction sets of the plurality of
recently executed instruction sets, the storing of (b) caused
by the processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by
any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving,

US 9,443,192 Bl

23

by the processor circuit via the interface, at least one extra
information associated with the plurality of recently
executed instruction sets. In some embodiments, the non-
transitory computer storage medium and/or the method
further comprise: storing the at least one extra information
associated with the comparative instruction sets, and storing
the at least one extra information associated with the antici-
patory instruction sets. In certain embodiments, the non-
transitory computer storage medium and/or the method
further comprise: storing the at least one extra information
associated with the comparative instruction sets together
with the portions of the comparative instruction sets, and
storing the at least one extra information associated with the
anticipatory instruction sets together with the portions of the
anticipatory instruction sets.

In some embodiments, the storing portions of compara-
tive instruction sets and portions of anticipatory instruction
sets includes storing portions of comparative instruction sets
followed by portions of anticipatory instruction sets. In
further embodiments, the comparative instruction sets
include one or more comparative instruction sets and the
anticipatory instruction sets include one or more anticipatory
instruction sets. In further embodiments, the comparative
instruction sets include instruction sets whose portions can
be used for comparisons with portions of new instruction
sets, and the anticipatory instruction sets include instruction
sets whose portions can be used for anticipation of instruc-
tion sets subsequent to the new instruction sets. In further
embodiments, the storing portions of comparative instruc-
tion sets and portions of anticipatory instruction sets into the
knowledgebase includes storing portions of comparative
instruction sets and portions of anticipatory instruction sets
into a knowledge cell: The knowledge cell may include a
knowledge cell stored in the knowledgebase, the knowl-
edgebase comprising one or more knowledge cells.

In some aspects, the disclosure relates to a system for
anticipating an application’s operations. The system may
operate on one or more computing devices. In some embodi-
ments, the system comprises a computing device including
a processor circuit that is coupled to a memory unit. The
system may further include an application, running on the
processor circuit, for performing operations on the comput-
ing device. The system may further include a knowledge-
base that stores portions of comparative instruction sets and
portions of anticipatory instruction sets, the knowledgebase
comprising a plurality of portions of comparative instruction
sets and portions of anticipatory instruction sets, wherein the
comparative and the anticipatory instruction sets are part of
the application for performing operations on the computing
device. The system may further include an interface con-
figured to receive new instruction sets, wherein the new
instruction sets are part of the application for performing
operations on the computing device. The system may further
include a decision-making unit configured to: compare por-
tions of the new instruction sets with portions of the com-
parative instruction sets in the knowledgebase, determine
that there is substantial similarity between one or more new
instruction sets and one or more comparative instruction sets
in the knowledgebase, and anticipate one or more anticipa-
tory instruction sets in the knowledgebase.

In some embodiments, the comparative instruction sets
include the least recently executed instruction sets of a
plurality of previously executed instruction sets and the
anticipatory instruction sets include the most recently
executed instruction sets of the plurality of previously
executed instruction sets, the plurality of previously
executed instruction sets comprise instruction sets executed

10

15

20

25

30

35

40

45

50

55

60

65

24

immediately prior to and including an instruction set
executed at a past time point. In further embodiments, the
portions of comparative instruction sets and portions of
anticipatory instruction sets stored in the knowledgebase
include the portions of comparative instruction sets followed
by the portions of anticipatory instruction sets. In further
embodiments, the knowledgebase further stores at least one
extra information associated with the comparative instruc-
tion sets and at least one extra information associated with
the anticipatory instruction sets.

In some embodiments, the system may be further config-
ured to: receive at least one extra information associated
with the new instruction sets.

In certain embodiments, the determining that there is
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
knowledgebase includes finding a match between all but a
threshold number of portions of the one or more new
instruction sets and all but a threshold number of portions of
the one or more comparative instruction sets. In further
embodiments, the determining that there is substantial simi-
larity between one or more new instruction sets and one or
more comparative instruction sets in the knowledgebase
includes finding a match between at least one portion of the
one or more new instruction sets and at least one portion of
the one or more comparative instruction sets.

In some embodiments, the decision-making unit may be
further configured to compare at least one extra information
associated with the new instruction sets with at least one
extra information associated with the comparative instruc-
tion sets in the knowledgebase. The determining that there is
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
knowledgebase may include finding a match between all but
a threshold number of extra information associated with the
one or more new instruction sets and all but a threshold
number of extra information associated with the one or more
comparative instruction sets. The determining that there is
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
knowledgebase may include finding a match between the at
least one extra information associated with the one or more
new instruction sets and the at least one extra information
associated with the one or more comparative instruction
sets.

In certain embodiments, the anticipating the one or more
anticipatory instruction sets includes finding one or more
comparative instruction sets followed by the one or more
anticipatory instruction sets in the knowledgebase. In further
embodiments, the processor circuit may be caused to
execute the one or more anticipatory instruction sets from
the knowledgebase. In further embodiments, the portions of
the comparative instruction sets and the portions of the
anticipatory instruction sets may be stored in one or more
knowledge cells.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that
when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: accessing a knowledgebase that stores portions of
comparative instruction sets and portions of anticipatory
instruction sets, the knowledgebase comprising a plurality of
portions of comparative instruction sets and portions of
anticipatory instruction sets, wherein the comparative and
the anticipatory instruction sets are part of an application for
performing operations on a computing device. The opera-

US 9,443,192 Bl

25

tions may further include receiving new instruction sets,
wherein the new instruction sets are part of the application
for performing operations on the computing device. The
operations may further include comparing portions of the
new instruction sets with portions of the comparative
instruction sets in the knowledgebase. The operations may
further include determining that there is a substantial simi-
larity between one or more new instruction sets and one or
more comparative instruction sets in the knowledgebase.
The operations may further include anticipating one or more
anticipatory instruction sets in the knowledgebase.

In some aspects, the disclosure relates to a method com-
prising: (a) accessing a knowledgebase that stores portions
of comparative instruction sets and portions of anticipatory
instruction sets, the knowledgebase comprising a plurality of
portions of comparative instruction sets and portions of
anticipatory instruction sets, wherein the comparative and
the anticipatory instruction sets are part of an application for
performing operations on a computing device, the accessing
of (a) performed by a processor circuit. The method may
further include (b) receiving new instruction sets, wherein
the new instruction sets are part of the application for
performing operations on the computing device, the receiv-
ing of (b) performed by the processor circuit. The method
may further include (c) comparing portions of the new
instruction sets with portions of the comparative instruction
sets in the knowledgebase, the comparing of (c) performed
by the processor circuit. The method may further include (d)
determining that there is a substantial similarity between one
or more new instruction sets and one or more comparative
instruction sets in the knowledgebase, the determining of (d)
performed by the processor circuit. The method may further
include (e) anticipating one or more anticipatory instruction
sets in the knowledgebase, the anticipating of (e) performed
by the processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by
any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In some embodiments, the comparative instruction sets
include the least recently executed instruction sets of a
plurality of previously executed instruction sets and the
anticipatory instruction sets include the most recently
executed instruction sets of the plurality of previously
executed instruction sets, the plurality of previously
executed instruction sets comprise instruction sets executed
immediately prior to and including an instruction set
executed at a past time point. In further embodiments, the
portions of comparative instruction sets and portions of
anticipatory instruction sets stored in the knowledgebase
include the portions of comparative instruction sets followed
by the portions of anticipatory instruction sets. In further
embodiments, the knowledgebase further stores at least one
extra information associated with the comparative instruc-
tion sets and at least one extra information associated with
the anticipatory instruction sets.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving
at least one extra information associated with the new
instruction sets, the receiving performed by the processor
circuit.

In some embodiments, the determining that there is sub-
stantial similarity between one or more new instruction sets
and one or more comparative instruction sets in the knowl-

20

25

30

35

40

45

55

26

edgebase includes finding a match between all but a thresh-
old number of portions of the one or more new instruction
sets and all but a threshold number of portions of the one or
more comparative instruction sets. In further embodiments,
the determining that there is substantial similarity between
one or more new instruction sets and one or more compara-
tive instruction sets in the knowledgebase includes finding a
match between at least one portion of the one or more new
instruction sets and at least one portion of the one or more
comparative instruction sets.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: comparing
at least one extra information associated with the new
instruction sets with at least one extra information associated
with the comparative instruction sets in the knowledgebase,
the comparing performed by the processor circuit. The
determining that there is substantial similarity between one
or more new instruction sets and one or more comparative
instruction sets in the knowledgebase may include finding a
match between all but a threshold number of extra informa-
tion associated with the one or more new instruction sets and
all but threshold number of extra information associated
with the one or more comparative instruction sets. The
determining that there is substantial similarity between one
or more new instruction sets and one or more comparative
instruction sets in the knowledgebase may include finding a
match between the at least one extra information associated
with the one or more new instruction sets and the at least one
extra information associated with the one or more compara-
tive instruction sets.

In further embodiments, the anticipating the one or more
anticipatory instruction sets includes finding one or more
comparative instruction sets followed by the one or more
anticipatory instruction sets in the knowledgebase.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: executing
the one or more anticipatory instruction sets by the processor
circuit.

In further embodiments, the portions of the comparative
instruction sets and the portions of the anticipatory instruc-
tion sets may be stored in one or more knowledge cells.

In some aspects, the disclosure relates to a system for
autonomous application operating. The system may operate
on one or more computing devices. In some embodiments,
the system comprises a computing device including a pro-
cessor circuit that is coupled to a memory unit. The system
may further include an application, running on the processor
circuit, for performing operations on the computing device.
The system may further include an interface configured to
receive a first instruction set and a second instruction set, the
interface further configured to receive a new instruction set,
wherein the first, the second, and the new instruction sets are
executed by the processor circuit and are part of the appli-
cation for performing operations on the computing device.
The system may further include a neural network configured
to store at least one portion of the first instruction set and at
least one portion of the second instruction set, the neural
network comprising a plurality of portions of instruction
sets. The system may further include a decision-making unit
configured to: compare at least one portion of the new
instruction set with at least one portion of the first instruction
set from the neural network, and determine that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network, The processor
circuit may be caused to execute the second instruction set
from the neural network.

US 9,443,192 Bl

27

In certain embodiments, the application includes at least
one of: a software application, an executable program, a web
browser, a word processing application, an operating sys-
tem, a media application, a global positioning system appli-
cation, a game application, a robot control application, a
database application, a software hardcoded on a chip, or a
software hardcoded on a hardware element.

In some embodiments, the first instruction set may be
followed by the second instruction set. In further embodi-
ments, the first instruction set includes a comparative
instruction set whose portions can be used for comparisons
with portions of the new instruction set. In further embodi-
ments, the second instruction set includes an anticipatory
instruction set that can be used for anticipation of an
instruction set subsequent to the new instruction set.

In certain embodiments, each of the first, the second, and
the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto. In further embodiments, each of the first,
the second, and the new instruction set includes a source
code, a bytecode, an intermediate code, a compiled code, an
interpreted code, a translated code, a runtime code, an
assembly code, a structured query language (SQL) code, or
a machine code. In further embodiments, each of the first,
the second, and the new instruction set includes one or more
code segments, lines of code, statements, instructions, func-
tions, routines, subroutines, or basic blocks. In further
embodiments, each of the first, the second, and the new
instruction set includes an absolute or a relative instruction
set.

In some embodiments, the receiving the first, the second,
and the new instruction sets includes obtaining the first, the
second, and the new instruction sets. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets from the processor circuit as the
processor circuit executes them. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes receiving the first, the second, and the new instruc-
tion sets from at least one of: the application, the memory
unit, the processor circuit, the computing device, a virtual
machine, a runtime engine, a hard drive, a storage device, a
peripheral device, a network connected device, or an user. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes receiving the first, the
second, and the new instruction sets at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets used for operating an object of the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation of the application’s
a source code, a bytecode, an intermediate code, a compiled
code, an interpreted code, a translated code, a runtime code,
an assembly code, a structured query language (SQL) code,
or a machine code. In further embodiments, the receiving the
first, the second, and the new instruction sets includes at
least one of: tracing, profiling, or instrumentation of the
memory unit, a register of the processor circuit, a storage, or
a repository where the application’s instruction sets may be
stored. In further embodiments, the receiving the first, the
second, and the new instruction sets includes at least one of:
tracing, profiling, or instrumentation of the application or an
object of the application. In further embodiments, the receiv-

10

15

20

25

30

35

40

45

50

55

60

65

28

ing the first, the second, and the new instruction sets includes
at least one of: tracing, profiling, or instrumentation of the
processor circuit, the computing device, a virtual machine,
a runtime engine, an operating system, an execution stack,
a program counter, or an element used in running the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation at a source code
write time, a compile time, an interpretation time, a trans-
lation time, a linking time, a loading time, or a runtime. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes at least one of: tracing,
profiling, or instrumentation of one or more of the applica-
tion’s code segments, lines of code, statements, instructions,
functions, routines, subroutines, or basic blocks. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes at least one of: tracing, profiling, or
instrumentation of an user input. In further embodiments,
the receiving the first, the second, and the new instruction
sets includes at least one of: a manual, an automatic, a
dynamic, or a just in time (JIT) tracing, profiling, or instru-
mentation of the application. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing at least one of: a .NET tool, a .NET
application programming interface (API), a Java tool, a Java
API, a logging tool, or an independent tool for receiving the
application’s instruction sets. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing an assembly language. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes a branch tracing, or a simulation
tracing.

In some embodiments, the interface may be further con-
figured to receive at least one extra information associated
with the first instruction set, at least one extra information
associated with the second instruction set, and at least one
extra information associated with the new instruction set.
The at least one extra information may include one or more
of: contextual information, time information, geo-spatial
information, environmental information, situational infor-
mation, observed information, computed information, pre-
computed information, analyzed information, or inferred
information. The at least one extra information include one
or more of: an information on an instruction set, an infor-
mation on the application, an information on an object of the
application, an information on the computing device, or an
information on an user. The at least one extra information
may include one or more of: a time stamp, an user specific
information, a group specific information, a version of the
application, a type of the application, a type of the comput-
ing device, or a type of an user. The at least one extra
information may include one or more of: a text property, a
text formatting, a preceding text, or a subsequent text. The
at least one extra information may include one or more of:
a location, a direction, a type, a speed, or a posture of an
object of the application. The at least one extra information
may include one or more of: a relationship, a distance, or an
allegiance of an object of the application relative to another
object of the application. The at least one extra information
may include an information on an object of the application
within an area of interest. The receiving the at least one extra
information may include associating an importance with an
extra information. The neural network may be further con-
figured to store the at least one extra information.

In certain embodiments, the interface may be further
configured to modify the application. The modifying the
application may include redirecting the application’s execu-

US 9,443,192 Bl

29

tion to one or more alternate instruction sets, the alternate
instruction sets comprising an anticipatory instruction set.
The modifying the application may include redirecting the
application’s execution to the second instruction set. The
modifying the application may include causing the processor
circuit to execute the second instruction set instead of or
prior to an instruction set that would have followed the new
instruction set. The modifying the application may include
modifying one or more instruction sets of the application.
The moditfying the application may include modifying at
least one of the application’s: a source code, a bytecode, an
intermediate code, a compiled code, an interpreted code, a
translated code, a runtime code, an assembly code, or a
machine code. The modifying the application may include
modifying at least one of: the memory unit, a register of the
processor circuit, a storage, or a repository where the appli-
cation’s instruction sets may be stored. The modifying the
application may include modifying instruction sets used for
operating an object of the application. The modifying the
application may include modifying at least one of: an
element of the processor circuit, an element of the comput-
ing device, a virtual machine, a runtime engine, an operating
system, an execution stack, a program counter, or an user
input used in running the application. The modifying the
application may include modifying the application at a
source code write time, a compile time, an interpretation
time, a translation time, a linking time, a loading time, or a
runtime. The modifying the application may include modi-
fying one or more of the application’s code segments, lines
of code, statements, instructions, functions, routines, sub-
routines, or basic blocks. The modifying the application may
include a manual, an automatic, a dynamic, or a just in time
(JIT) instrumentation of the application. The modifying the
application may include utilizing one or more of a .NET
tool, a .NET application programming interface (API), a
Java tool, a Java API, an operating system tool, or an
independent tool for modifying the application. The modi-
fying the application may include utilizing at least one of: a
dynamic, an interpreted, or a scripting programming lan-
guage. The modifying the application may include utilizing
at least one of: a dynamic code, a dynamic class loading, or
a reflection. The modifying the application may include
utilizing an assembly language. The modifying the applica-
tion may include utilizing at least one of: a metaprogram-
ming, a self-modifying code, or an application modification
tool. The modifying the application may include utilizing at
least one of: just in time (JIT) compiling, JIT interpretation,
JIT translation, dynamic recompiling, or binary rewriting.
The moditying the application may include utilizing at least
one of: a dynamic expression creation, a dynamic expression
execution, a dynamic function creation, or a dynamic func-
tion execution. The modifying the application may include
adding or inserting additional code into the application code.
The modifying the application may include at least one of:
modifying, removing, rewriting, or overwriting the applica-
tion code. The modifying the application may include at
least one of: branching, redirecting, extending, or hot swap-
ping the application code. The branching or redirecting the
application code may include inserting at least one of: a
branch, a jump, a trampoline, a trap, or a system for
redirecting the application execution. In further embodi-
ments, the interface may be part of, operating on, or coupled
with the processor circuit.

In certain embodiments, the first instruction set includes
a comparative instruction set whose stored portions can be
used for comparisons with portions of the new instruction
set, and the second instruction set includes an anticipatory

10

15

20

25

30

35

40

45

55

60

65

30

instruction set whose stored portions can be used for antici-
pation of an instruction set subsequent to the new instruction
set. In further embodiments, a portion of the first, the second,
or the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto.

In some embodiments, the neural network includes a
plurality of nodes interconnected by one or more connec-
tions. A node may include one or more instruction sets,
portions of an instruction set, data structures, objects, or
data. A connection may include an occurrence count and
weight. The occurrence count may comprise the number of
observations that an instruction set included in one node was
followed by an instruction set included in another node. The
occurrence count may comprise the number of observations
that an instruction set included in one node was preceded by
an instruction set included in another node. The weight may
include the number of occurrences of one connection origi-
nating from a node divided by a sum of occurrences of all
connections originating from the node. The weight may
include the number of occurrences of one connection point-
ing to a node divided by a sum of occurrences of all
connections pointing to the node. The neural network may
include at least one layer, each layer comprising one or more
nodes.

In certain embodiments, the neural network includes one
or more comparative layers and one or more anticipatory
layers. The storing the at least one portion of the first
instruction set and the at least one portion of the second
instruction set into the neural network may include storing
the at least one portion of the first instruction set into a node
of'a comparative layer of the neural network and the at least
one portion of the second instruction set into a node of an
anticipatory layer of the neural network. The comparative
layer may be followed the anticipatory layer. One or more
nodes of successive layers may be interconnected by con-
nections. The one or more comparative layers may include
one or more nodes comprising at least one portion of one or
more least recently executed instruction sets from a plurality
of recently executed instruction sets. The one or more
anticipatory layers may include one or more nodes compris-
ing at least one portion of one or more most recently
executed instruction sets from a plurality of recently
executed instruction sets.

In some embodiments, the storing the at least one portion
of the first instruction set and the at least one portion of the
second instruction set includes storing the at least one
portion of the first instruction set followed by the at least one
portion of the second instruction set.

In certain embodiments, the storing the at least one
portion of the first instruction set and the at least one portion
of the second instruction set into the neural network includes
storing the at least one portion of the first instruction set into
a first node of the neural network and the at least one portion
of the second instruction set into a second node of the neural
network. The first node and the second node may be
connected by a connection. The first node may be part of a
first layer of the neural network and the second node may be
part of a second layer of the neural network. The first layer
may be followed by the second layer. The first layer may
include a comparative layer and the second layer includes an
anticipatory layer.

In some embodiments, the storing the at least one portion
of the first instruction set and the at least one portion of the
second instruction set into the neural network includes

US 9,443,192 Bl

31

applying the at least one portion of the first instruction set
and the at least one portion of the second instruction set onto
the neural network.

In certain embodiments, the neural network includes a
remote or a global neural network operating on a remote
computing device. In further embodiments, the neural net-
work includes one or more user specific or group specific
neural networks. In further embodiments, the neural network
includes an artificial intelligence system for knowledge
structuring, storing, or representation. The artificial intelli-
gence system for knowledge structuring, storing, or repre-
sentation may include at least one of: a deep learning
system, a supervised learning system, an unsupervised learn-
ing system, a feed-forward neural network, a back-propa-
gating neural network, a recurrent neural network, a convo-
lutional neural network, a custom neural network, a search-
based system, an optimization-based system, a logic-based
system, a fuzzy logic-based system, a tree-based system, a
graph-based system, a hierarchical system, a symbolic sys-
tem, a sub-symbolic system, an evolutionary system, a
genetic system, a multi-agent system, a deterministic sys-
tem, a probabilistic system, or a statistical system. In further
embodiments, the neural network includes a user’s knowl-
edge, style, or methodology of operating the application or
an object of the application. In further embodiments, the
plurality of portions of instruction sets in the neural network
include portions of instruction sets received from a plurality
of memory units, processor circuits, computing devices,
virtual machines, runtime engines, hard drives, storage
devices, peripheral devices, network connected devices, or
users via a plurality of interfaces.

In some embodiments, the neural network may be further
configured to store at least one extra information associated
with the first instruction set and at least one extra informa-
tion associated with the second instruction set. The at least
one extra information associated with the first instruction set
may be stored in a same node of the neural network as the
at least one portion of the first instruction set and the at least
one extra information associated with the second instruction
set may be stored in a same node of the neural network as
the at least one portion of the second instruction set.

In certain embodiments, the neural network may be
further configured to store an importance associated with the
first instruction set and an importance associated with the
second instruction set. In further embodiments, the neural
network may be part of, operating on, or coupled with the
processor circuit.

In some embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
may be part of comparing at least one portion of the new
instruction set with at least one portion of instruction sets
stored in nodes of one or more comparative layers of the
neural network. The instruction sets stored in nodes of one
or more comparative layers of the neural network may
include the first instruction set. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the neural network includes comparing the portions of their
respective instruction sets as separate strings of characters.
In further embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
includes comparing the portions of their respective instruc-
tion sets as combined strings of characters. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first

10

15

20

25

30

35

40

45

55

60

32

instruction set from the neural network includes comparing
the portions comprising numeric values as numbers. In
further embodiments, the comparing the at least one portion
of the new instruction set with the at least one portion of the
first instruction set from the neural network includes com-
paring the portions factoring in an importance of one or
more of the portions. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the neural
network includes comparing the portions factoring in
semantically equivalent variations of one or more of the
portions. In further embodiments, the comparing the at least
one portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
includes comparing the portions factoring in a rating of one
or more of the instruction sets. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the neural network includes comparing an order of a portion
of the new instruction set with an order of a portion of an
instruction set from the neural network. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the neural network may be part of a
substantial similarity comparison of the new instruction set
with the instruction sets from the neural network. The
substantial similarity comparison may include a comparison
strictness function for adjusting a strictness of the compari-
son.

In some embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network includes finding
a match between all but a threshold number of portions of
the new instruction set and all but a threshold number of
portions of the first instruction set from the neural network.
In further embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network includes finding
a match between at least one portion of the new instruction
set and at least one portion of the first instruction set from
the neural network. In further embodiments, the determining
that there is a substantial similarity between the new instruc-
tion set and the first instruction set from the neural network
includes finding a match between important portions of the
new instruction set and important portions of the first
instruction set from the neural network. In further embodi-
ments, the determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the neural network includes determining that there is a
substantial similarity between at least one portion of the new
instruction set and at least one portion of the first instruction
set from the neural network.

In certain embodiments, the decision-making unit may be
further configured to compare at least one extra information
associated with the new instruction set with at least one extra
information associated with the first instruction set from the
neural network. The determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the neural network may include finding
a match between all but a threshold number of extra infor-
mation associated with the new instruction set and all but a
threshold number of extra information associated with the
first instruction set from the neural network. The determin-
ing that there is a substantial similarity between the new
instruction set and the first instruction set from the neural
network may include finding a match between at least one
extra information associated with the new instruction set and

US 9,443,192 Bl

33

at least one extra information associated with the first
instruction set from the neural network.

In some embodiments, the decision-making unit may be
further configured to anticipate the second instruction set.
The anticipating the second instruction set may include
finding a node of the neural network comprising at least one
portion of the first instruction set and a node of the neural
network comprising at least one portion of the second
instruction set, the nodes comprising the at least one portion
of the first and the second instruction sets connected by a
highest weight connection. The anticipating the second
instruction set may include selecting a path of nodes of the
neural network, the nodes connected by one or more con-
nections and including a node comprising at least one
portion of the first instruction set followed by a node
comprising at least one portion of the second instruction set.
The anticipating the second instruction set may include
inferring that the second instruction set is an instruction set
to be executed following the new instruction set. The
anticipating the second instruction set may include causing
the processor circuit to execute the second instruction set
prior to an instruction set that would have followed the new
instruction set.

In certain embodiments, the decision-making unit may be
further configured to generate a comparison accuracy index,
the comparison accuracy index indicating a similarity
between the new instruction set and the first instruction set
from the neural network.

In some embodiments, the decision-making unit may be
further configured to analyze a contextual information, the
contextual information including at least one of: information
about the first, the second, or the new instruction set,
information about the application or an object of the appli-
cation, information about the computing device, or infor-
mation useful in the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the neural network. In further embodi-
ments, the decision-making unit may be part of, operating
on, or coupled with the processor circuit.

In certain embodiments, the executing the second instruc-
tion set from the neural network includes performing an
operation defined by the second instruction set from the
neural network. An operation defined by the second instruc-
tion set from the neural network may include at least one of:
an operation of a forms-based application, an operation of a
web browser, an operation of an operating system, an
operation of a word processing application, an operation of
a media application, an operation of a global positioning
system (GPS) application, an operation of a game applica-
tion, an operation of a robot control application, or an
operation of a database application. In further embodiments,
the executing the second instruction set from the neural
network includes executing the second instruction set from
the neural network in response to the determining that there
is a substantial similarity between the new instruction set
and the first instruction set from the neural network. In
further embodiments, the executing the second instruction
set from the neural network includes implementing a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application, the user’s knowledge,
style, or methodology of operating the application or an
object of the application represented by the instructions sets
stored in the neural network. In further embodiments, the
executing the second instruction set from the neural network
includes executing a modified second instruction set from
the neural network. In further embodiments, the executing

10

15

20

25

30

35

40

45

50

55

60

65

34

the second instruction set from the neural network includes
executing an external application or process.

In some embodiments, the system further comprises: a
command disassembler configured to disassemble the first,
the second, and the new instruction sets into their portions.
The disassembling the first, the second, and the new instruc-
tion sets into their portions may include identifying at least
one of: a command, a keyword, a symbol, an instruction, an
operator, a variable, a value, an object, a function, a param-
eter, a character, or a digit of the first, the second, and the
new instruction sets as a portion. The disassembling the first,
the second, and the new instruction sets into their portions
may include identifying types of the first, the second, and the
new instruction sets. The disassembling the first, the second,
and the new instruction sets into their portions may include
associating an importance with a portion of the first, the
second, and the new instruction sets. In further embodi-
ments, the command disassembler may be part of, operating
on, or coupled with the processor circuit.

In certain embodiments, the system further comprises: a
modifier configured to modify the second instruction set.
The modifying the second instruction set may include
replacing at least one portion of the second instruction set
with at least one portion of the first, the new, or an another
instruction set. The modifying the second instruction set
may include replacing at least one portion of the second
instruction set with at least one of: a command, a keyword,
a symbol, an instruction, an operator, a variable, a value, an
object, a function, a parameter, a character, or a digit from
the first, the new, or an another instruction set. The modi-
fying the second instruction set may include replacing at
least one portion of the second instruction set with at least
one extra information associated with the first, the new, or an
another instruction set. The modifying the second instruc-
tion set may include replacing at least one portion of the
second instruction set with a contextual information, a time
information, a geo-spatial information, an environmental
information, a situational information, an observed informa-
tion, a computed information, a pre-computed information,
an analyzed information, or an inferred information. The
modifying the second instruction set may include replacing
at least one portion of the second instruction set with
information derived from projecting a path, a movement, a
trajectory, or a pattern in portions of one or more of the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one
portion of the second instruction set with semantically
equivalent variations of at least one portion of the first, the
new, or an another instruction set, The modifying the second
instruction set may include replacing the second instruction
set with an instruction set generated by a non-UAIE system
or process. In further embodiments, the modifier may be part
of, operating on, or coupled with the processor circuit.

In some embodiments, the system further comprises: a
display configured to display the second instruction set as an
option to be selected, modified, or canceled by a user. The
displaying the second instruction set as an option to be
selected, modified, or canceled by a user may include
displaying a comparison accuracy indicating a similarity
between the new instruction set and the first instruction set
from the neural network. The second instruction set may
include a previously modified second instruction set.

In certain embodiments, the system further comprises: a
rating system configured to rate the executed second instruc-
tion set. The rating the executed second instruction set may
include displaying the executed second instruction set along
with one or more rating values as options to be selected by

US 9,443,192 Bl

35

a user. The rating the executed second instruction set may
include automatically rating the executed second instruction
set. The rating the executed second instruction set may
include associating a rating value with the executed second
instruction set and storing the rating value in the neural
network. The executed second instruction set may include a
previously modified second instruction set. In further
embodiments, the rating system may be part of, operating
on, or coupled with the processor circuit.

In some embodiments, the system further comprises: a
cancelation system configured to cancel the execution of the
executed second instruction set. The canceling the execution
of the executed second instruction set may include display-
ing the executed second instruction set as an option to be
selected for cancelation by a user. The canceling the execu-
tion of the executed second instruction set may include
associating a cancelation with the executed second instruc-
tion set and storing the cancelation in the neural network.
The canceling the execution of the executed second instruc-
tion set may include restoring the computing device to a
prior state. The restoring the computing device to a prior
state may include saving the state of the computing device
prior to executing the second instruction set. The executed
second instruction set may include a previously modified
second instruction set. In further embodiments, the cancel-
ation system may be part of, operating on, or coupled with
the processor circuit.

In certain embodiments, the system further comprises: a
command assembler configured to assemble the second
instruction set from its portions. In further embodiments, the
command assembler may be part of, operating on, or
coupled with the processor circuit.

In some embodiments, the system further comprises: a
knowledge structuring unit configured to cause the storing of
the at least one portion of the first instruction set and the at
least one portion of the second instruction set into the neural
network. In further embodiments, the knowledge structuring
unit may be part of, operating on, or coupled with the
processor circuit.

In certain embodiments, the system further comprises: an
universal artificial intelligence engine (UAIE) for autono-
mous application operating. The UAIE may comprise at
least one of: the interface, the neural network, the decision-
making unit, a command disassembler, a collection of
recently executed instruction sets, a knowledge structuring
unit, a modifier, a command assembler, a rating system, or
a cancelation system. In further embodiments, the autono-
mous application operating includes a partially or a fully
autonomous application operating. The partially autono-
mous application operating may include executing the sec-
ond instruction set or a modified second instruction set
responsive to a confirmation by a user. The fully autono-
mous application operating may include executing the sec-
ond instruction set or a modified second instruction set
without a confirmation. In further embodiments, the autono-
mous application operating includes executing one or more
instruction sets generated by the UAIE. The one or more
instruction sets generated by the UAIE may include the
second instruction set or a modified second instruction set.
The one or more instruction sets generated by the UAIE may
include one or more instruction sets for operating the
application or an object of the application. The one or more
instruction sets generated by the UAIE may include one or
more instruction sets stored in the neural network. In further
embodiments, the autonomous application operating
includes automatic or auto-pilot operating. The automatic or
auto-pilot operating may include executing one or more

10

15

20

25

30

35

40

45

50

55

60

65

36

instruction sets generated by the UAIE. In further embodi-
ments, the autonomous application operating includes
executing one or more instruction sets generated by a
non-UAIE system or process.

In some embodiments, the UAIE includes an UAIE that
operates independently from the computing device. In fur-
ther embodiments, the UAIE includes an UAIE attachable to
the computing device. In further embodiments, the UAIE
includes an UAIE built into the computing device. In further
embodiments, the UAIE includes an UAIE that operates
independently from the application. In further embodiments,
the UAIE includes an UAIE attachable to the application. In
further embodiments, the UAIE includes an UAIE built into
the application. In further embodiments, the UAIE includes
an UAIE provided as a feature of the computing device’s
operating system. In further embodiments, the application
includes an application running on the computing device and
the UAIE includes an UAIE running on a remote computing
device. In further embodiments, the UAIE includes an UAIE
running on the computing device and the application
includes an application running on a remote computing
device. In further embodiments, the UAIE includes a remote
or a global UAIE operating on a remote computing device.
In further embodiments, the UAIE may be configured to
load one or more instruction sets into the neural network. In
further embodiments, the UAIE may be configured to load
one or more neural networks into the UAIE. In further
embodiments, the UAIE may be configured to take control
from, share control with, or release control to the application
or an object of the application. In further embodiments, the
UAIE may be configured to learn a user’s knowledge, style,
or methodology of operating the application or an object of
the application. The learning a user’s knowledge, style, or
methodology of operating the application or an object of the
application may include storing the at least one portion of
the first instruction set and the at least one portion of the
second instruction set into the neural network. In further
embodiments, the UAIE may be part of, operating on, or
coupled with the processor circuit.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that
when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: receiving a first instruction set and a second instruc-
tion set, wherein the first and the second instruction sets are
executed by a processor circuit and are part of an application
for performing operations on a computing device. The
operations may further include storing at least one portion of
the first instruction set and at least one portion of the second
instruction set into a neural network, the neural network
comprising a plurality of portions of instruction sets. The
operations may further include receiving a new instruction
set, wherein the new instruction set is executed by the
processor circuit and is part of the application for perform-
ing operations on the computing device. The operations may
further include comparing at least one portion of the new
instruction set with at least one portion of the first instruction
set from the neural network. The operations may further
include determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the neural network. The operations may further include
causing the processor circuit to execute the second instruc-
tion set from the neural network.

In some aspects, the disclosure relates to a method com-
prising: (a) receiving, by a processor circuit via an interface,
a first instruction set and a second instruction set, wherein

US 9,443,192 Bl

37

the first and the second instruction sets are executed by the
processor circuit and are part of an application for perform-
ing operations on a computing device. The method may
further include (b) storing at least one portion of the first
instruction set and at least one portion of the second instruc-
tion set into a neural network, the neural network comprising
a plurality of portions of instruction sets, the storing of (b)
caused by the processor circuit. The method may further
include (c) receiving, by the processor circuit via the inter-
face, a new instruction set, wherein the new instruction set
is executed by the processor circuit and is part of the
application for performing operations on the computing
device. The method may further include (d) comparing at
least one portion of the new instruction set with at least one
portion of the first instruction set from the neural network,
the comparing of (d) performed by the processor circuit. The
method may further include (e) determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network, the determining
of (e) performed by the processor circuit. The method may
further include executing the second instruction set from the
neural network by the processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by
any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In some embodiments, the application includes at least
one of: a software application, an executable program, a web
browser, a word processing application, an operating sys-
tem, a media application, a global positioning system appli-
cation, a game application, a robot control application, a
database application, a software hardcoded on a chip, or a
software hardcoded on a hardware element.

In certain embodiments, the first instruction set may be
followed by the second instruction set. In further embodi-
ments, the first instruction set includes a comparative
instruction set whose portions can be used for comparisons
with portions of the new instruction set. In further embodi-
ments, the second instruction set includes an anticipatory
instruction set that can be used for anticipation of an
instruction set subsequent to the new instruction set.

In some embodiments, each of the first, the second, and
the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto. In further embodiments, each of the first,
the second, and the new instruction set includes a source
code, a bytecode, an intermediate code, a compiled code, an
interpreted code, a translated code, a runtime code, an
assembly code, a structured query language (SQL) code, or
a machine code. In further embodiments, each of the first,
the second, and the new instruction set includes one or more
code segments, lines of code, statements, instructions, func-
tions, routines, subroutines, or basic blocks. In further
embodiments, each of the first, the second, and the new
instruction set includes an absolute or a relative instruction
set.

In certain embodiments, the receiving the first, the sec-
ond, and the new instruction sets includes obtaining the first,
the second, and the new instruction sets. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets from the processor circuit as the
processor circuit executes them. In further embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

38

receiving the first, the second, and the new instruction sets
includes receiving the first, the second, and the new instruc-
tion sets from at least one of: the application, the memory
unit, the processor circuit, the computing device, a virtual
machine, a runtime engine, a hard drive, a storage device, a
peripheral device, a network connected device, or an user. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes receiving the first, the
second, and the new instruction sets at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes receiving the first, the second, and
the new instruction sets used for operating an object of the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation of the application’s
a source code, a bytecode, an intermediate code, a compiled
code, an interpreted code, a translated code, a runtime code,
an assembly code, a structured query language (SQL) code,
or a machine code. In further embodiments, the receiving the
first, the second, and the new instruction sets includes at
least one of: tracing, profiling, or instrumentation of the
memory unit, a register of the processor circuit, a storage, or
a repository where the application’s instruction sets may be
stored. In further embodiments, the receiving the first, the
second, and the new instruction sets includes at least one of:
tracing, profiling, or instrumentation of the application or an
object of the application. In further embodiments, the receiv-
ing the first, the second, and the new instruction sets includes
at least one of: tracing, profiling, or instrumentation of the
processor circuit, the computing device, a virtual machine,
a runtime engine, an operating system, an execution stack,
a program counter, or an element used in running the
application. In further embodiments, the receiving the first,
the second, and the new instruction sets includes at least one
of: tracing, profiling, or instrumentation at a source code
write time, a compile time, an interpretation time, a trans-
lation time, a linking time, a loading time, or a runtime. In
further embodiments, the receiving the first, the second, and
the new instruction sets includes at least one of: tracing,
profiling, or instrumentation of one or more of the applica-
tion’s code segments, lines of code, statements, instructions,
functions, routines, subroutines, or basic blocks. In further
embodiments, the receiving the first, the second, and the new
instruction sets includes at least one of: tracing, profiling, or
instrumentation of an user input. In further embodiments,
the receiving the first, the second, and the new instruction
sets includes at least one of: a manual, an automatic, a
dynamic, or a just in time (JIT) tracing, profiling, or instru-
mentation of the application. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing at least one of: a .NET tool, a .NET
application programming interface (API), a Java tool, a Java
API, a logging tool, or an independent tool for receiving the
application’s instruction sets. In further embodiments, the
receiving the first, the second, and the new instruction sets
includes utilizing an assembly language. In further embodi-
ments, the receiving the first, the second, and the new
instruction sets includes a branch tracing, or a simulation
tracing.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving
at least one extra information associated with the first
instruction set, at least one extra information associated with
the second instruction set, and at least one extra information
associated with the new instruction set. The at least one extra

US 9,443,192 Bl

39

information may include one or more of: contextual infor-
mation, time information, geo-spatial information, environ-
mental information, situational information, observed infor-
mation, computed information, pre-computed information,
analyzed information, or inferred information. The at least
one extra information may include one or more of: an
information on an instruction set, an information on the
application, an information on an object of the application,
an information on the computing device, or an information
on an user. The at least one extra information may include
one or more of: a time stamp, an user specific information,
a group specific information, a version of the application, a
type of the application, a type of the computing device, or a
type of an user. The at least one extra information may
include one or more of: a text property, a text formatting, a
preceding text, or a subsequent text. The at least one extra
information may include one or more of: a location, a
direction, a type, a speed, or a posture of an object of the
application. The at least one extra information may include
one or more of: a relationship, a distance, or an allegiance of
an object of the application relative to another object of the
application. The at least one extra information may include
an information on an object of the application within an area
of interest. The receiving the at least one extra information
may include associating an importance with an extra infor-
mation. In further embodiments, the non-transitory com-
puter storage medium and/or the method further comprise:
storing the at least one extra information into the neural
network.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: modifying
the application. The modifying the application may include
redirecting the application’s execution to one or more alter-
nate instruction sets, the alternate instruction sets compris-
ing an anticipatory instruction set. The modifying the appli-
cation may include redirecting the application’s execution to
the second instruction set. The moditying the application
may include causing the processor circuit to execute the
second instruction set instead of or prior to an instruction set
that would have followed the new instruction set. The
modifying the application may include moditying one or
more instruction sets of the application. The modifying the
application may include modifying at least one of the
application’s: a source code, a bytecode, an intermediate
code, a compiled code, an interpreted code, a translated
code, a runtime code, an assembly code, or a machine code.
The moditfying the application may include modifying at
least one of: the memory unit, a register of the processor
circuit, a storage, or a repository where the application’s
instruction sets may be stored. The modifying the applica-
tion may include modifying instruction sets used for oper-
ating an object of the application. The modifying the appli-
cation may include modifying at least one of: an element of
the processor circuit, an element of the computing device, a
virtual machine, a runtime engine, an operating system, an
execution stack, a program counter, or an user input used in
running the application. The modifying the application may
include modifying the application at a source code write
time, a compile time, an interpretation time, a translation
time, a linking time, a loading time, or a runtime. The
modifying the application may include moditying one or
more of the application’s code segments, lines of code,
statements, instructions, functions, routines, subroutines, or
basic blocks. The modifying the application may include a
manual, an automatic, a dynamic, or a just in time (JIT)
instrumentation of the application. The modifying the appli-
cation may include utilizing one or more of a .NET tool, a

10

15

20

25

30

35

40

45

50

55

60

65

40

NET application programming interface (API), a Java tool,
a Java API, an operating system tool, or an independent tool
for modifying the application. The modifying the applica-
tion may include utilizing at least one of: a dynamic, an
interpreted, or a scripting programming language. The modi-
fying the application may include utilizing at least one of: a
dynamic code, a dynamic class loading, or a reflection. The
modifying the application may include utilizing an assembly
language. The modifying the application may include uti-
lizing at least one of: a metaprogramming, a self-modifying
code, or an application modification tool. The modifying the
application may include utilizing at least one of: just in time
(JIT) compiling, JIT interpretation, JIT translation, dynamic
recompiling, or binary rewriting. The modifying the appli-
cation may include utilizing at least one of: a dynamic
expression creation, a dynamic expression execution, a
dynamic function creation, or a dynamic function execution.
The modifying the application may include adding or insert-
ing additional code into the application code. The modifying
the application may include at least one of: modifying,
removing, rewriting, or overwriting the application code.
The modifying the application may include at least one of:
branching, redirecting, extending, or hot swapping the appli-
cation code. The branching or redirecting the application
code may include inserting at least one of: a branch, a jump,
a trampoline, a trap, or a system for redirecting the appli-
cation execution. The modifying the application may be
performed by the processor circuit.

In some embodiments, the first instruction set includes a
comparative instruction set whose stored portions can be
used for comparisons with portions of the new instruction
set, and the second instruction set includes an anticipatory
instruction set whose stored portions can be used for antici-
pation of an instruction set subsequent to the new instruction
set. In further embodiments, a portion of the first, the second,
or the new instruction set includes one or more commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, functions, parameters, characters, digits, or
references thereto.

In certain embodiments, the neural network includes a
plurality of nodes interconnected by one or more connec-
tions. A node may include one or more instruction sets,
portions of an instruction set, data structures, objects, or
data. A connection may include an occurrence count and
weight. The occurrence count may comprise the number of
observations that an instruction set included in one node was
followed by an instruction set included in another node. The
occurrence count may comprise the number of observations
that an instruction set included in one node was preceded by
an instruction set included in another node. The weight may
include the number of occurrences of one connection origi-
nating from a node divided by a sum of occurrences of all
connections originating from the node. The weight may
include the number of occurrences of one connection point-
ing to a node divided by a sum of occurrences of all
connections pointing to the node. The neural network may
include at least one layer, each layer comprising one or more
nodes.

In some embodiments, the neural network includes one or
more comparative layers and one or more anticipatory
layers. The storing the at least one portion of the first
instruction set and the at least one portion of the second
instruction set into the neural network may include storing
the at least one portion of the first instruction set into a node
of'a comparative layer of the neural network and the at least
one portion of the second instruction set into a node of an
anticipatory layer of the neural network. The comparative

US 9,443,192 Bl

41

layer may be followed the anticipatory layer. One or more
nodes of successive layers may be interconnected by con-
nections. The one or more comparative layers may include
one or more nodes comprising at least one portion of one or
more least recently executed instruction sets from a plurality
of recently executed instruction sets. The one or more
anticipatory layers may include one or more nodes compris-
ing at least one portion of one or more most recently
executed instruction sets from a plurality of recently
executed instruction sets.

In certain embodiments, the storing the at least one
portion of the first instruction set and the at least one portion
of the second instruction set may include storing the at least
one portion of the first instruction set followed by the at least
one portion of the second instruction set.

In some embodiments, the storing the at least one portion
of the first instruction set and the at least one portion of the
second instruction set into the neural network includes
storing the at least one portion of the first instruction set into
a first node of the neural network and the at least one portion
of the second instruction set into a second node of the neural
network. The first node and the second node may be
connected by a connection. The first node may be part of a
first layer of the neural network and the second node may be
part of a second layer of the neural network. The first layer
may be followed by the second layer. The first layer may
include a comparative layer and the second layer may
include an anticipatory layer.

In certain embodiments, the storing the at least one
portion of the first instruction set and the at least one portion
of the second instruction set into the neural network includes
applying the at least one portion of the first instruction set
and the at least one portion of the second instruction set onto
the neural network.

In some embodiments, the neural network includes a
remote or a global neural network operating on a remote
computing device. In further embodiments, the neural net-
work includes one or more user specific or group specific
neural networks. In further embodiments, the neural network
includes an artificial intelligence system for knowledge
structuring, storing, or representation. The artificial intelli-
gence system for knowledge structuring, storing, or repre-
sentation may include at least one of: a deep learning
system, a supervised learning system, an unsupervised learn-
ing system, a feed-forward neural network, a back-propa-
gating neural network, a recurrent neural network, a convo-
lutional neural network, a custom neural network, a search-
based system, an optimization-based system, a logic-based
system, a fuzzy logic-based system, a tree-based system, a
graph-based system, a hierarchical system, a symbolic sys-
tem, a sub-symbolic system, an evolutionary system, a
genetic system, a multi-agent system, a deterministic sys-
tem, a probabilistic system, or a statistical system. In further
embodiments, the neural network includes a user’s knowl-
edge, style, or methodology of operating the application or
an object of the application. In further embodiments, the
plurality of portions of instruction sets in the neural network
include portions of instruction sets received from a plurality
of memory units, processor circuits, computing devices,
virtual machines, runtime engines, hard drives, storage
devices, peripheral devices, network connected devices, or
users via a plurality of interfaces.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: storing at
least one extra information associated with the first instruc-
tion set and at least one extra information associated with the
second instruction set into the neural network. The at least

10

15

20

25

30

35

40

45

50

55

60

65

42

one extra information associated with the first instruction set
may be stored in a same node of the neural network as the
at least one portion of the first instruction set and the at least
one extra information associated with the second instruction
set may be stored in a same node of the neural network as
the at least one portion of the second instruction set.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: storing an
importance associated with the first instruction set and an
importance associated with the second instruction set into
the neural network.

In some embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
may be part of comparing at least one portion of the new
instruction set with at least one portion of instruction sets
stored in nodes of one or more comparative layers of the
neural network. The instruction sets stored in nodes of one
or more comparative layers of the neural network may
include the first instruction set. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the neural network includes comparing the portions of their
respective instruction sets as separate strings of characters.
In further embodiments, the comparing the at least one
portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
includes comparing the portions of their respective instruc-
tion sets as combined strings of characters. In further
embodiments, the comparing the at least one portion of the
new instruction set with the at least one portion of the first
instruction set from the neural network includes comparing
the portions comprising numeric values as numbers. In
further embodiments, the comparing the at least one portion
of the new instruction set with the at least one portion of the
first instruction set from the neural network includes com-
paring the portions factoring in an importance of one or
more of the portions. In further embodiments, the comparing
the at least one portion of the new instruction set with the at
least one portion of the first instruction set from the neural
network includes comparing the portions factoring in
semantically equivalent variations of one or more of the
portions. In further embodiments, the comparing the at least
one portion of the new instruction set with the at least one
portion of the first instruction set from the neural network
includes comparing the portions factoring in a rating of one
or more of the instruction sets. In further embodiments, the
comparing the at least one portion of the new instruction set
with the at least one portion of the first instruction set from
the neural network includes comparing an order of a portion
of the new instruction set with an order of a portion of an
instruction set from the neural network. In further embodi-
ments, the comparing the at least one portion of the new
instruction set with the at least one portion of the first
instruction set from the neural network may be part of a
substantial similarity comparison of the new instruction set
with the instruction sets from the neural network. The
substantial similarity comparison may include a comparison
strictness function for adjusting a strictness of the compari-
son.

In certain embodiments, the determining that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network includes finding
a match between all but a threshold number of portions of
the new instruction set and all but a threshold number of
portions of the first instruction set from the neural network.
In further embodiments, the determining that there is a

US 9,443,192 Bl

43

substantial similarity between the new instruction set and the
first instruction set from the neural network includes finding
a match between at least one portion of the new instruction
set and at least one portion of the first instruction set from
the neural network. In further embodiments, the determining
that there is a substantial similarity between the new instruc-
tion set and the first instruction set from the neural network
includes finding a match between important portions of the
new instruction set and important portions of the first
instruction set from the neural network. In further embodi-
ments, the determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the neural network includes determining that there is a
substantial similarity between at least one portion of the new
instruction set and at least one portion of the first instruction
set from the neural network.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: comparing
at least one extra information associated with the new
instruction set with at least one extra information associated
with the first instruction set from the neural network. The
determining that there is a substantial similarity between the
new instruction set and the first instruction set from the
neural network may include finding a match between all but
a threshold number of extra information associated with the
new instruction set and all but a threshold number of extra
information associated with the first instruction set from the
neural network. The determining that there is a substantial
similarity between the new instruction set and the first
instruction set from the neural network may include finding
a match between at least one extra information associated
with the new instruction set and at least one extra informa-
tion associated with the first instruction set from the neural
network.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: anticipat-
ing the second instruction set. The anticipating the second
instruction set may include finding a node of the neural
network comprising at least one portion of the first instruc-
tion set and a node of the neural network comprising at least
one portion of the second instruction set, the nodes com-
prising the at least one portion of the first and the second
instruction sets connected by a highest weight connection.
The anticipating the second instruction set may include
selecting a path of nodes of the neural network, the nodes
connected by one or more connections and including a node
comprising at least one portion of the first instruction set
followed by a node comprising at least one portion of the
second instruction set. The anticipating the second instruc-
tion set may include inferring that the second instruction set
is an instruction set to be executed following the new
instruction set. The anticipating the second instruction set
may include causing the processor circuit to execute the
second instruction set prior to an instruction set that would
have followed the new instruction set. The anticipating the
second instruction set may be performed by the processor
circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: generating
a comparison accuracy index, the comparison accuracy
index indicating a similarity between the new instruction set
and the first instruction set from the neural network.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: analyzing
a contextual information, the contextual information includ-
ing at least one of: information about the first, the second, or
the new instruction set, information about the application or

10

15

20

25

30

35

40

45

50

55

60

65

44

an object of the application, information about the comput-
ing device, or information useful in the comparing the at
least one portion of the new instruction set with the at least
one portion of the first instruction set from the neural
network.

In certain embodiments, the executing the second instruc-
tion set from the neural network includes performing an
operation defined by the second instruction set from the
neural network. An operation defined by the second instruc-
tion set from the neural network may include at least one of:
an operation of a forms-based application, an operation of a
web browser, an operation of an operating system, an
operation of a word processing application, an operation of
a media application, an operation of a global positioning
system (GPS) application, an operation of a game applica-
tion, an operation of a robot control application, or an
operation of a database application. In further embodiments,
the executing the second instruction set from the neural
network includes executing the second instruction set from
the neural network in response to the determining that there
is a substantial similarity between the new instruction set
and the first instruction set from the neural network. In
further embodiments, the executing the second instruction
set from the neural network includes implementing a user’s
knowledge, style, or methodology of operating the applica-
tion or an object of the application, the user’s knowledge,
style, or methodology of operating the application or an
object of the application represented by the instructions sets
stored in the neural network. In further embodiments, the
executing the second instruction set from the neural network
includes executing a modified second instruction set from
the neural network. In further embodiments, the executing
the second instruction set from the neural network includes
executing an external application or process.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: disassem-
bling the first, the second, and the new instruction sets into
their portions. The disassembling the first, the second, and
the new instruction sets into their portions may include
identifying at least one of: a command, a keyword, a symbol,
an instruction, an operator, a variable, a value, an object, a
function, a parameter, a character, or a digit of the first, the
second, and the new instruction sets as a portion. The
disassembling the first, the second, and the new instruction
sets into their portions may include identifying types of the
first, the second, and the new instruction sets. The disas-
sembling the first, the second, and the new instruction sets
into their portions may include associating an importance
with a portion of the first, the second, and the new instruc-
tion sets. The disassembling the first, the second, and the
new instruction sets into their portions may be performed by
the processor circuit.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: modifying
the second instruction set. The modifying the second instruc-
tion set may include replacing at least one portion of the
second instruction set with at least one portion of the first,
the new, or an another instruction set. The modifying the
second instruction set may include replacing at least one
portion of the second instruction set with at least one of: a
command, a keyword, a symbol, an instruction, an operator,
a variable, a value, an object, a function, a parameter, a
character, or a digit from the first, the new, or an another
instruction set. The modifying the second instruction set
may include replacing at least one portion of the second
instruction set with at least one extra information associated
with the first, the new, or an another instruction set. The

US 9,443,192 Bl

45

modifying the second instruction set may include replacing
at least one portion of the second instruction set with a
contextual information, a time information, a geo-spatial
information, an environmental information, a situational
information, an observed information, a computed informa-
tion, a pre-computed information, an analyzed information,
or an inferred information. The modifying the second
instruction set may include replacing at least one portion of
the second instruction set with information derived from
projecting a path, a movement, a trajectory, or a pattern in
portions of one or more of the first, the new, or an another
instruction set. The modifying the second instruction set
may include replacing at least one portion of the second
instruction set with semantically equivalent variations of at
least one portion of the first, the new, or an another instruc-
tion set. The modifying the second instruction set may
include replacing the second instruction set with an instruc-
tion set generated by a non-UAIE system or process. The
modifying the second instruction set may be performed by
the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: displaying
the second instruction set as an option to be selected,
modified, or canceled by a user. The displaying the second
instruction set as an option to be selected, modified, or
canceled by a user may include displaying a comparison
accuracy indicating a similarity between the new instruction
set and the first instruction set from the neural network. The
second instruction set may include a previously modified
second instruction set.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: rating the
executed second instruction set. The rating the executed
second instruction set may include displaying the executed
second instruction set along with one or more rating values
as options to be selected by a user. The rating the executed
second instruction set may include automatically rating the
executed second instruction set. The rating the executed
second instruction set may include associating a rating value
with the executed second instruction set and storing the
rating value in the neural network. The executed second
instruction set may include a previously modified second
instruction set. The rating the executed second instruction
set may be performed by the processor circuit.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: canceling
the execution of the executed second instruction set. The
canceling the execution of the executed second instruction
set may include displaying the executed second instruction
set as an option to be selected for cancelation by a user. The
canceling the execution of the executed second instruction
set may include associating a cancelation with the executed
second instruction set and storing the cancelation in the
neural network. The canceling the execution of the executed
second instruction set may include restoring the computing
device to a prior state. The restoring the computing device
to a prior state may include saving the state of the computing
device prior to executing the second instruction set. The
executed second instruction set may include a previously
modified second instruction set. The canceling the execution
of the executed second instruction set may be performed by
the processor circuit.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: assembling
the second instruction set from its portions. The assembling
the second instruction set from its portions may be per-
formed by the processor circuit.

10

15

20

25

30

35

40

45

50

55

60

65

46

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: an autono-
mous operating of the application caused by an universal
artificial intelligence engine (UAIE). The UAIE may com-
prise at least one of the interface, the neural network, the
decision-making unit, a command disassembler, a collection
of recently executed instruction sets, a knowledge structur-
ing unit, a modifier, a command assembler, a rating system,
or a cancelation system. In further embodiments, the autono-
mous application operating includes a partially or a fully
autonomous application operating. The partially autono-
mous application operating may include executing the sec-
ond instruction set or a meodified second instruction set
responsive to a confirmation by a user. The fully autono-
mous application operating may include executing the sec-
ond instruction set or a meodified second instruction set
without a confirmation. In further embodiments, the autono-
mous application operating includes executing one or more
instruction sets generated by the UAIE. The one or more
instruction sets generated by the UAIE may include the
second instruction set or a modified second instruction set.
The one or more instruction sets generated by the UAIE may
include one or more instruction sets for operating the
application or an object of the application. The one or more
instruction sets generated by the UAIE may include one or
more instruction sets stored in the neural network. In further
embodiments, the autonomous application operating
includes automatic or auto-pilot operating. The automatic or
auto-pilot operating may include executing one or more
instruction sets generated by the UAIE. In further embodi-
ments, the autonomous application operating includes
executing one or more instruction sets generated by a
non-UAIE system or process.

In further embodiments, the UAIE includes an UAIE that
operates independently from the computing device. In fur-
ther embodiments, the UAIE includes an UAIE attachable to
the computing device. In further embodiments, the UAIE
includes an UAIE built into the computing device. In further
embodiments, the UAIE includes an UAIE that operates
independently from the application. In further embodiments,
the UAIE includes an UAIE attachable to the application. In
further embodiments, the UAIE includes an UAIE built into
the application. In further embodiments, the UAIE includes
an UAIE provided as a feature of the computing device’s
operating system. In further embodiments, the application
includes an application running on the computing device and
the UAIE includes an UAIE running on a remote computing
device. In further embodiments, the UAIE includes an UAIE
running on the computing device and the application
includes an application running on a remote computing
device. In further embodiments, the UAIE includes a remote
or a global UAIE operating on a remote computing device.

In some embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: loading
one or more instruction sets into the neural network. In
certain embodiments, the non-transitory computer storage
medium and/or the method further comprise: loading one or
more neural networks into the UAIE. In some embodiments,
the non-transitory computer storage medium and/or the
method further comprise: taking control from, sharing con-
trol with, or releasing control to the application or an object
of the application, the taking, sharing, or releasing control
performed by the UAIE. In certain embodiments, the non-
transitory computer storage medium and/or the method
further comprise: learning a user’s knowledge, style, or
methodology of operating the application or an object of the
application. The learning a user’s knowledge, style, or

US 9,443,192 Bl

47

methodology of operating the application or an object of the
application may include storing the at least one portion of
the first instruction set and the at least one portion of the
second instruction set into the neural network. The operation
of the UAIE may be performed by the processor circuit.

In some aspects, the disclosure relates to a system for
learning an application’s operations. The system may oper-
ate on one or more computing devices. In some embodi-
ments, the system comprises a computing device including
a processor circuit that is coupled to a memory unit. The
system may further include an application, running on the
processor circuit, for performing operations on the comput-
ing device. The system may further include an interface
configured to receive a plurality of recently executed
instruction sets, the plurality of recently executed instruction
sets comprise instruction sets executed immediately prior to
and including a currently executed instruction set, wherein
the plurality of recently executed instruction sets are part of
the application for performing operations on the computing
device. The system may further include a neural network
configured to store portions of the least recently executed
instruction sets of the plurality of recently executed instruc-
tion sets into nodes of comparative layers of the neural
network and store portions of the most recently executed
instruction sets of the plurality of recently executed instruc-
tion sets into nodes of anticipatory layers of the neural
network.

In some embodiments, the interface may be further con-
figured to receive at least one extra information associated
with the plurality of recently executed instruction sets. The
neural network may be further configured to store the at least
one extra information associated with the least recently
executed instruction sets into the nodes of comparative
layers of the neural network and store the at least one extra
information associated with the most recently executed
instruction sets into the nodes of anticipatory layers of the
neural network. The neural network may be further config-
ured to store the at least one extra information associated
with the least recently executed instruction sets into the
nodes comprising the portions of the least recently executed
instruction sets and, and wherein the neural network may be
further configured to store the at least one extra information
associated with the most recently executed instruction sets
into the nodes comprising the portions of the most recently
executed instruction sets.

In certain embodiments, the least recently executed
instruction sets of the plurality of recently executed instruc-
tion sets include instruction sets whose portions can be used
for comparisons with portions of new instruction sets and
the most recently executed instruction sets of the plurality of
recently executed instruction sets include instruction sets
whose portions can be used for anticipation of instruction
sets subsequent to the new instruction sets. In further
embodiments, the least recently executed instruction sets of
the plurality of recently executed instruction sets include one
or more instruction sets and the most recently executed
instruction sets of the plurality of recently executed instruc-
tion sets include one or more instruction sets. In further
embodiments, the comparative layers include one or more
comparative layers and the anticipatory layers include one or
more anticipatory layers. In further embodiments, the com-
parative layers may be followed by anticipatory layers. In
further embodiments, one or more nodes of successive
layers may be interconnected by connections.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that

10

15

20

25

30

35

40

45

50

55

60

65

48

when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: receiving a plurality of recently executed instruction
sets, the plurality of recently executed instruction sets com-
prise instruction sets executed immediately prior to and
including a currently executed instruction set, wherein the
plurality of recently executed instruction sets are part of an
application for performing operations on a computing
device. The operations may further include storing portions
of' the least recently executed instruction sets of the plurality
of recently executed instruction sets into nodes of compara-
tive layers of a neural network. The operations may further
include storing portions of the most recently executed
instruction sets of the plurality of recently executed instruc-
tion sets into nodes of anticipatory layers of the neural
network.

In some aspects, the disclosure relates to a method com-
prising: (a) receiving, by a processor circuit via an interface,
a plurality of recently executed instruction sets, the plurality
of recently executed instruction sets comprise instruction
sets executed immediately prior to and including a currently
executed instruction set, wherein the plurality of recently
executed instruction sets are part of an application for
performing operations on a computing device. The method
may further include (b) storing portions of the least recently
executed instruction sets of the plurality of recently executed
instruction sets into nodes of comparative layers of a neural
network, the storing of (b) caused by the processor circuit.
The method may further include (c) storing portions of the
most recently executed instruction sets of the plurality of
recently executed instruction sets into nodes of anticipatory
layers of the neural network, the storing of (c) caused by the
processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by
any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving,
by the processor circuit via the interface, at least one extra
information associated with the plurality of recently
executed instruction sets. In further embodiments, the non-
transitory computer storage medium and/or the method
further comprise: storing the at least one extra information
associated with the least recently executed instruction sets
into the nodes of comparative layers of the neural network,
and storing the at least one extra information associated with
the most recently executed instruction sets into the nodes of
anticipatory layers of the neural network. In further embodi-
ments, the non-transitory computer storage medium and/or
the method further comprise: storing the at least one extra
information associated with the least recently executed
instruction sets into the nodes comprising the portions of the
least recently executed instruction sets, and storing the at
least one extra information associated with the most recently
executed instruction sets into the nodes comprising the
portions of the most recently executed instruction sets.

In further embodiments, the least recently executed
instruction sets of the plurality of recently executed instruc-
tion sets include instruction sets whose portions can be used
for comparisons with portions of new instruction sets and
the most recently executed instruction sets of the plurality of
recently executed instruction sets include instruction sets
whose portions can be used for anticipation of instruction

US 9,443,192 Bl

49

sets subsequent to the new instruction sets. In further
embodiments, the least recently executed instruction sets of
the plurality of recently executed instruction sets include one
or more instruction sets and the most recently executed
instruction sets of the plurality of recently executed instruc-
tion sets include one or more instruction sets. In further
embodiments, the comparative layers include one or more
comparative layers and the anticipatory layers include one or
more anticipatory layers. In further embodiments, the com-
parative layers may be followed by anticipatory layers. In
further embodiments, one or more nodes of successive
layers may be interconnected by connections.

In some aspects, the disclosure relates to a system for
anticipating an application’s operations. The system may
operate on one or more computing devices. In some embodi-
ments, the system comprises a computing device including
a processor circuit that is coupled to a memory unit. The
system may further include an application, running on the
processor circuit, for performing operations on the comput-
ing device. The system may further include a neural network
that stores portions of comparative instruction sets and
portions of anticipatory instruction sets, the neural network
comprising a plurality of portions of comparative instruction
sets and portions of anticipatory instruction sets, wherein the
comparative and the anticipatory instruction sets are part of
the application for performing operations on the computing
device. The system may further include an interface con-
figured to receive new instruction sets, the new instruction
sets are part of the application for performing operations on
the computing device. The system may further include a
decision-making unit configured to: compare portions of the
new instruction sets with the portions of the comparative
instruction sets in the neural network, determine that there is
a substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network, and anticipate one or more anticipatory
instruction sets in the neural network.

In some embodiments, the comparative instruction sets
include the least recently executed instruction sets of a
plurality of previously executed instruction sets and the
anticipatory instruction sets include the most recently
executed instruction sets of the plurality of previously
executed instruction sets, the plurality of previously
executed instruction sets comprise instruction sets executed
immediately prior to and including an instruction set
executed at a past time. In further embodiments, the portions
of comparative instruction sets may be stored into nodes of
comparative layers of the neural network and the portions of
anticipatory instruction sets may be stored into nodes of
anticipatory layers of the neural network. The comparative
layers may be followed by anticipatory layers. In further
embodiments, the neural network further stores at least one
extra information associated with the comparative instruc-
tion sets and at least one extra information associated with
the anticipatory instruction sets.

In certain embodiments, the interface may be further
configured to receive at least one extra information associ-
ated with the new instruction sets.

In some embodiments, the determining that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network includes finding a match between all but a
threshold number of portions of the one or more new
instruction sets and all but a threshold number of portions of
the one or more comparative instruction sets. In further
embodiments, the determining that there is a substantial
similarity between one or more new instruction sets and one

20

25

30

35

40

45

50

55

60

65

50

or more comparative instruction sets in the neural network
includes finding a match between at least one portion of the
one or more new instruction sets and at least one portion of
the one or more comparative instruction sets. In further
embodiments, the decision-making unit may be further
configured to compare at least one extra information asso-
ciated with the new instruction sets with at least one extra
information associated with the comparative instruction sets
in the neural network. The determining that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network may include finding a match between all but
a threshold number of extra information associated with the
one or more new instruction sets and all but a threshold
number of extra information associated with the one or more
comparative instruction sets. The determining that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network may include finding a match between the at
least one extra information associated with the one or more
new instruction sets and the at least one extra information
associated with the one or more comparative instruction
sets.

In certain embodiments, the portions of the comparative
instruction sets may be stored in nodes of comparative layers
of the neural network and the portions of the anticipatory
instruction sets may be stored in nodes of anticipatory layers
of the neural network. The anticipating the one or more
anticipatory instruction sets in the neural network may
include selecting a path of nodes through comparative layers
of the neural network followed by a path of nodes through
anticipatory layers of the neural network, the nodes in
successive comparative and successive anticipatory layers
connected by one or more connections. In further embodi-
ments, the processor circuit is caused to execute the one or
more anticipatory instruction sets from the neural network.

In some aspects, the disclosure relates to a non-transitory
computer storage medium having a computer program
stored thereon, the program comprising instructions that
when executed by one or more computing devices cause the
one or more computing devices to perform operations com-
prising: accessing a neural network that stores portions of
comparative instruction sets and portions of anticipatory
instruction sets, the neural network comprising a plurality of
portions of comparative instruction sets and portions of
anticipatory instruction sets, wherein the comparative and
the anticipatory instruction sets are part of an application for
performing operations on a computing device. The opera-
tions may further include receiving new instruction sets,
wherein the new instruction sets are part of the application
for performing operations on the computing device. The
operations may further include comparing portions of the
new instruction sets with the portions of the comparative
instruction sets in the neural network. The operations may
further include determining that there is a substantial simi-
larity between one or more new instruction sets and one or
more comparative instruction sets in the neural network. The
operations may further include anticipating one or more
anticipatory instruction sets in the neural network.

In some aspects, the disclosure relates to a method com-
prising: (a) accessing a neural network that stores portions of
comparative instruction sets and portions of anticipatory
instruction sets, the neural network comprising a plurality of
portions of comparative instruction sets and portions of
anticipatory instruction sets, wherein the comparative and
the anticipatory instruction sets are part of an application for
performing operations on a computing device, the accessing

US 9,443,192 Bl

51

of (a) performed by a processor circuit. The method may
further include (b) receiving new instruction sets, wherein
the new instruction sets are part of the application for
performing operations on the computing device, the receiv-
ing of (b) performed by the processor circuit. The method
may further include (c) comparing portions of the new
instruction sets with the portions of the comparative instruc-
tion sets in the neural network, the comparing of (c) per-
formed by the processor circuit. The method may further
include (d) determining that there is a substantial similarity
between one or more new instruction sets and one or more
comparative instruction sets in the neural network, the
determining of (d) performed by the processor circuit. The
method may further include (e) anticipating one or more
anticipatory instruction sets in the neural network, the antici-
pating of (e) performed by the processor circuit.

The operations or steps of the non-transitory computer
storage medium and/or the method may be performed by
any of the elements of the above described system as
applicable. The non-transitory computer storage medium
and/or the method may include any of the operations, steps,
and embodiments of the above described system as appli-
cable as well as the following embodiments.

In some embodiments, the comparative instruction sets
include the least recently executed instruction sets of a
plurality of previously executed instruction sets and the
anticipatory instruction sets include the most recently
executed instruction sets of the plurality of previously
executed instruction sets, the plurality of previously
executed instruction sets comprise instruction sets executed
immediately prior to and including an instruction set
executed at a past time. In further embodiments, the portions
of comparative instruction sets may be stored into nodes of
comparative layers of the neural network and the portions of
anticipatory instruction sets may be stored into nodes of
anticipatory layers of the neural network. The comparative
layers may be followed by anticipatory layers. In further
embodiments, the neural network further stores at least one
extra information associated with the comparative instruc-
tion sets and at least one extra information associated with
the anticipatory instruction sets.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: receiving
at least one extra information associated with the new
instruction sets, the receiving performed by the processor
circuit.

In some embodiments, the determining that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network includes finding a match between all but a
threshold number of portions of the one or more new
instruction sets and all but a threshold number of portions of
the one or more comparative instruction sets. In further
embodiments, the determining that there is a substantial
similarity between one or more new instruction sets and one
or more comparative instruction sets in the neural network
includes finding a match between at least one portion of the
one or more new instruction sets and at least one portion of
the one or more comparative instruction sets.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: comparing
at least one extra information associated with the new
instruction sets with at least one extra information associated
with the comparative instruction sets in the neural network,
the comparing performed by the processor circuit. The
determining that there is a substantial similarity between one
or more new instruction sets and one or more comparative

20

25

30

35

40

45

55

52

instruction sets in the neural network may include finding a
match between all but a threshold number of extra informa-
tion associated with the one or more new instruction sets and
all but a threshold number of extra information associated
with the one or more comparative instruction sets. The
determining that there is a substantial similarity between one
or more new instruction sets and one or more comparative
instruction sets in the neural network may include finding a
match between the at least one extra information associated
with the one or more new instruction sets and the at least one
extra information associated with the one or more compara-
tive instruction sets.

In some embodiments, the portions of the comparative
instruction sets may be stored in nodes of comparative layers
of the neural network and the portions of the anticipatory
instruction sets may be stored in nodes of anticipatory layers
of the neural network. The anticipating the one or more
anticipatory instruction sets in the neural network may
include selecting a path of nodes through comparative layers
of the neural network followed by a path of nodes through
anticipatory layers of the neural network, the nodes in
successive comparative and successive anticipatory layers
connected by one or more connections.

In certain embodiments, the non-transitory computer stor-
age medium and/or the method further comprise: executing
the one or more anticipatory instruction sets by the processor
circuit.

In some aspects, the disclosure relates to a method com-
prising: (a) receiving, by a first processor circuit via an
interface, a first instruction set and a second instruction set,
wherein the first and the second instruction sets are executed
by a second processor circuit and are part of an application
for performing operations on a computing device. The
method may further include (b) storing at least one portion
of the first instruction set and at least one portion of the
second instruction set into a knowledgebase, the knowledge-
base comprising a plurality of portions of instruction sets,
the storing of (b) caused by the first processor circuit. The
method may further include (c) receiving, by the first
processor circuit via the interface, a new instruction set,
wherein the new instruction set is executed by the second
processor circuit and is part of the application for perform-
ing operations on the computing device. The method may
further include (d) comparing at least one portion of the new
instruction set with at least one portion of the first instruction
set from the knowledgebase, the comparing of (d) performed
by the first processor circuit. The method may further
include (e) determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the knowledgebase, the determining of (e) performed
by the first processor circuit. The method may further
include (f) executing the second instruction set from the
knowledgebase by the second processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

In some aspects, the disclosure relates to a method com-
prising: method comprising: (a) receiving, by a first proces-
sor circuit via an interface, a plurality of recently executed
instruction sets, the plurality of recently executed instruction
sets comprise instruction sets executed by a second proces-
sor circuit immediately prior to and including a currently
executed instruction set, wherein the plurality of recently
executed instruction sets are part of an application for
performing operations on a computing device. The method

US 9,443,192 Bl

53

may further include (b) storing portions of comparative
instruction sets and portions of anticipatory instruction sets
into a knowledgebase, the knowledgebase comprising a
plurality of portions of comparative instruction sets and
portions of anticipatory instruction sets, wherein the com-
parative instruction sets include the least recently executed
instruction sets of the plurality of recently executed instruc-
tion sets and the anticipatory instruction sets include the
most recently executed instruction sets of the plurality of
recently executed instruction sets, the storing of (b) caused
by the first processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

In some aspects, the disclosure relates to a method com-
prising: method comprising: (a) accessing a knowledgebase
that stores portions of comparative instruction sets and
portions of anticipatory instruction sets, the knowledgebase
comprising a plurality of portions of comparative instruction
sets and portions of anticipatory instruction sets, wherein the
comparative and the anticipatory instruction sets were
executed by a second processor circuit and are part of an
application for performing operations on a computing
device, the accessing of (a) performed by a first processor
circuit. The method may further include (b) receiving new
instruction sets, wherein the new instruction sets are
executed by the second processor circuit and are part of the
application for performing operations on the computing
device, the receiving of (b) performed by the first processor
circuit. The method may further include (c) comparing
portions of the new instruction sets with portions of the
comparative instruction sets in the knowledgebase, the com-
paring of (¢) performed by the first processor circuit. The
method may further include (d) determining that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
knowledgebase, the determining of (d) performed by the
first processor circuit. The method may further include (e)
anticipating one or more anticipatory instruction sets in the
knowledgebase, the anticipating of (e) performed by the first
processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

In some aspects, the disclosure relates to a method com-
prising: method comprising: (a) receiving, by a first proces-
sor circuit via an interface, a first instruction set and a second
instruction set, wherein the first and the second instruction
sets are executed by a second processor circuit and are part
of an application for performing operations on a computing
device. The method may further include (b) storing at least
one portion of the first instruction set and at least one portion
of the second instruction set into a neural network, the neural
network comprising a plurality of portions of instruction
sets, the storing of (b) caused by the first processor circuit.
The method may further include (c) receiving, by the first
processor circuit via the interface, a new instruction set,
wherein the new instruction set is executed by the second
processor circuit and is part of the application for perform-
ing operations on the computing device. The method may
further include (d) comparing at least one portion of the new
instruction set with at least one portion of the first instruction
set from the neural network, the comparing of (d) performed

25

30

35

40

45

54

by the first processor circuit. The method may further
include (e) determining that there is a substantial similarity
between the new instruction set and the first instruction set
from the neural network, the determining of (e) performed
by the first processor circuit. The method may further
include (f) executing the second instruction set from the
neural network by the second processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

In some aspects, the disclosure relates to a method com-
prising: method comprising: (a) receiving, by a first proces-
sor circuit via an interface, a plurality of recently executed
instruction sets, the plurality of recently executed instruction
sets comprise instruction sets executed by a second proces-
sor circuit immediately prior to and including a currently
executed instruction set, wherein the plurality of recently
executed instruction sets are part of an application for
performing operations on a computing device. The method
may further include (b) storing portions of the least recently
executed instruction sets of the plurality of recently executed
instruction sets into nodes of comparative layers of a neural
network, the storing of (b) caused by the first processor
circuit. The method may further include (c) storing portions
of'the most recently executed instruction sets of the plurality
of recently executed instruction sets into nodes of anticipa-
tory layers of the neural network, the storing of (c) caused
by the first processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

In some aspects, the disclosure relates to a method com-
prising: method comprising: (a) accessing a neural network
that stores portions of comparative instruction sets and
portions of anticipatory instruction sets, the neural network
comprising a plurality of portions of comparative instruction
sets and portions of anticipatory instruction sets, wherein the
comparative and the anticipatory instruction sets were
executed by a second processor circuit and are part of an
application for performing operations on a computing
device, the accessing of (a) performed by a first processor
circuit. The method may further include (b) receiving new
instruction sets, wherein the new instruction sets are
executed by the second processor circuit and are part of the
application for performing operations on the computing
device, the receiving of (b) performed by the first processor
circuit. The method may further include (c) comparing
portions of the new instruction sets with the portions of the
comparative instruction sets in the neural network, the
comparing of (c¢) performed by the first processor circuit.
The method may further include (d) determining that there
is a substantial similarity between one or more new instruc-
tion sets and one or more comparative instruction sets in the
neural network, the determining of (d) performed by the first
processor circuit. The method may further include (e) antici-
pating one or more anticipatory instruction sets in the neural
network, the anticipating of (e) performed by the first
processor circuit.

The operations or steps of the method may be performed
by any of the elements of the above described systems as
applicable. The method may include any of the operations,
steps, and embodiments of the above described systems as
applicable.

US 9,443,192 Bl

55

Other features and advantages of the disclosure will
become apparent from the following description, including
the claims and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of Computing Device
70 that can provide processing capabilities used in some of
the disclosed embodiments.

FIG. 2 is a diagram showing an embodiment of UAIE
implemented on Computing Device 70.

FIG. 3 illustrates an embodiment of typical elements or
steps that may lead to Software Application’s 120 execution
on Computing Device 70.

FIG. 4 is a diagram showing an embodiment of Acquisi-
tion and Modification Interface 110.

FIG. 5 shows an embodiment of tracing, profiling, or
sampling of instructions or data in processor registers,
memory, or other computing device components.

FIG. 6 is a diagram showing an embodiment of Artificial
Intelligence Unit 130 comprising Knowledgebase 530.

FIG. 7 illustrates an embodiment of Command Disassem-
bler 500 processing a function.

FIG. 8 illustrates an embodiment of Command Disassem-
bler 500 processing SQL statement.

FIG. 9 illustrates an embodiment of Command Disassem-
bler 500 processing bytecode.

FIG. 10 illustrates an embodiment of Command Disas-
sembler 500 processing assembly code.

FIG. 11 illustrates an embodiment of Command Disas-
sembler 500 processing machine code.

FIG. 12 is a diagram showing an embodiment of Opera-
tion/Instruction Set List 510.

FIG. 13 is a diagram showing an embodiment of Knowl-
edge Structuring Unit 520.

FIG. 14 is a diagram showing an embodiment of Knowl-
edgebase 530.

FIG. 15 is a diagram showing an embodiment of Deci-
sion-making Unit 540.

FIG. 16A illustrates an embodiment of importance Index
640 used for instruction Set Portions 620 and Extra Info 630.

FIG. 16B illustrates an embodiment of importance Index
640 used for Operation 610.

FIG. 17 A illustrates an embodiment of Comparison Accu-
racy Index 650 used for Substantially Similar Knowledge
Cell 1110.

FIG. 17B illustrates an embodiment of Comparison Accu-
racy Index 650 used for Operation 610.

FIG. 18 is a diagram showing an embodiment of Confir-
mation Unit 550 comprising Substantially Similar Knowl-
edge Cell 1110.

FIG. 19 is a diagram showing an embodiment of Com-
mand Assembler 560.

FIG. 20 is a diagram showing an embodiment of Artificial
Intelligence Unit 130 comprising User Specific Info 532 and
Group Specific Info 534.

FIG. 21 shows an embodiment of modifying instructions
or data in processor registers, memory, or other computing
device components.

FIG. 22 is a diagram showing an embodiment of UAIE
executing on Remote Computing Device 1310.

FIG. 23 is a diagram showing an embodiment of Software
Application 120 executing on Remote Computing Device
1310.

FIG. 24 is a diagram showing an embodiment of Software
Application 120 including Acquisition and Modification
Interface 110, and Artificial Intelligence Unit 130.

25

30

35

40

45

50

56

FIG. 25 is a diagram showing an embodiment of UAIE
including Software Application 120, Acquisition and Modi-
fication Interface 110, and Artificial Intelligence Unit 130.

FIG. 26 is a diagram showing an embodiment of Knowl-
edgebase 530 residing on Remote Computing Device 1310.

FIG. 27 is a diagram showing an embodiment of Artificial
intelligence Unit 130 residing on Remote Computing
Device 1310.

FIG. 28 illustrates a flow chart diagram of an embodiment
of a method 6100 implemented by UAIE.

FIG. 29 illustrates a flow chart diagram of an embodiment
of a method 6200 implemented by UAIE.

FIG. 30 illustrates a flow chart diagram of an embodiment
of a method 6300 implemented by UAIE.

FIG. 31 illustrates a flow chart diagram of an embodiment
of a method 6400 implemented by UAIE.

FIG. 32 shows various artificial intelligence methods,
systems, and/or models that can be utilized in UAIE embodi-
ments.

FIG. 33 illustrates an embodiment of Artificial Intelli-
gence Unit 130 comprising Neural Network 850.

FIG. 34 illustrates an embodiment of Knowledge Struc-
turing Unit 520 learning Operations 610 or Instruction Sets
600 utilizing Neural Network 850.

FIG. 35A shows an example of Operations 610 intercon-
nected by Connections 853 in a neural network.

FIG. 35B shows an example of inserting an Operation
610.

FIG. 35C shows an example of an observation of an
additional occurrence of a Connection 853.

FIG. 36 illustrates another embodiment of Knowledge
Structuring Unit 520 learning Operations 610 or Instruction
Sets 600 utilizing Neural Network 850.

FIG. 37A shows another example of Operations 610
interconnected by Connections 853 in a neural network.

FIG. 37B shows another example of inserting an Opera-
tion 610.

FIG. 37C shows another example of an observation of an
additional occurrence of a Connection 853.

FIG. 38 illustrates an embodiment of Decision-making
Unit 540 anticipating Operations 610 or Instruction Sets 600
utilizing Neural Network 850.

FIG. 39 illustrates an exemplary embodiment of selecting
a path of Operations 610 through Neural Network 850.

FIG. 40 illustrates another embodiment of Decision-
making Unit 540 anticipating Operations 610 or Instruction
Sets 600 utilizing Neural Network 850.

FIG. 41 illustrates another exemplary embodiment of
selecting a path of Operations 610 through Neural Network
850.

FIG. 42 illustrates an embodiment of Confirmation Unit
550 comprising Substantially Similar Path 855.

FIG. 43 illustrates an embodiment of Knowledge Struc-
turing Unit 520 learning instruction Set Portions 620 utiliz-
ing Neural Network 850.

FIG. 44 illustrates an embodiment of Decision-making
Unit 540 anticipating Instruction Set Portions 620 utilizing
Neural Network 850.

FIG. 45 shows a flow chart diagram of an embodiment of
a method 7100 implemented by UAIE.

FIG. 46 shows a flow chart diagram of an embodiment of
a method 7200 implemented by UAIE.

FIG. 47 shows a flow chart diagram of an embodiment of
a method 7300 implemented by UAIE.

FIG. 48 shows a flow chart diagram of an embodiment of
a method 7400 implemented by UAIE.

US 9,443,192 Bl

57

FIG. 49 is a diagram showing an embodiment of UAIE
attached to Web Browser 120 executing on Personal Com-
puter 70.

FIG. 50 is a diagram showing an embodiment of UAIE
attached to Operating System 120 executing on Personal
Computer 70.

FIG. 51 is a diagram showing an embodiment of UAIE
attached to Word Application 120 executing on Personal
Computer 70.

FIG. 52 shows an embodiment of UAIE providing
autonomous operation functionalities in Word Application
120.

FIG. 53 is a diagram showing an embodiment of UAIE
attached to Media Application 120 executing on Media
Player 70.

FIG. 54 is a diagram showing an embodiment of UAIE
attached to GPS Application 120 executing on GPS Receiver
70.

FIG. 55 is a diagram showing an embodiment of UAIE
attached to Game Application 120 executing on Gaming
Device 70.

FIG. 56 shows an embodiment of User’s Avatar 643
performing various actions, moves, maneuvers, behaviors,
and/or other operations while engaging Opponent 644.

FIG. 57 shows an embodiment of User’s Avatar 643
moving and performing other operations on a path toward
Opponent 644.

FIG. 58 shows an embodiment of Autonomous Avatar 648
moving and performing other operations on a path toward
Opponent 644 based on learned information.

FIG. 59 shows an embodiment of User’s Avatar 643 faced
with a choice of paths toward Opponent 644.

FIG. 60 shows an embodiment of Autonomous Avatar 648
moving on a path toward Forest 645 based on learned
information and an inference drawn.

FIG. 61 shows an embodiment of User’s Avatar 643
moving toward Opponent 644 and utilizing Area of Interest
649.

FIG. 62 shows an embodiment of Autonomous Avatar 648
moving toward Opponent 644 and taking cover behind Rock
646 based on learned information and an inference drawn
while utilizing Area of Interest 649.

FIG. 63 is a diagram showing an embodiment of UAIE
attached to Control Application 120 executing on Robot 70.

FIG. 64 is a diagram showing an embodiment of UAIE
attached to Database Application 120 executing on Server
70.

Like reference numerals in different figures indicate like
elements. Horizontal or vertical “ . . . ” or other such indicia
may be used to indicate additional instances of the same type
of element. n, m, n+m, n-m or other such letters or indicia
represent integers or other sequential numbers that follow
the sequence where they are indicated. It should be noted
that n, m, and/or other such letters or indicia may represent
different numbers in different elements even where the
elements are depicted in the same figure. In general, n, m,
and/or other such letters or indicia follow the immediate
sequence and/or context where they are indicated. Any of
these or other such indicia may be used interchangeably
according to the context and space available. The drawings
are not necessarily to scale, with emphasis instead being
placed upon illustrating the embodiments, principles, and
concepts of the disclosure. A line or arrow between any of
the disclosed elements comprises an interface that enables
the coupling, connection, and/or interaction between the
elements.

10

15

20

25

30

35

40

45

50

55

60

65

58
DETAILED DESCRIPTION

The disclosed universal artificial intelligence engine for
computing devices and software applications comprises
systems, apparatuses, methods, features, functionalities,
and/or applications for learning the operation of a computing
device or software application, and storing this knowledge
in a knowledgebase, neural network, or other repository.
Then, using this stored knowledge, the engine enables
autonomous operation of the computing device or software
application with partial, minimal, or no user input. The
disclosed universal artificial intelligence engine for comput-
ing devices and software applications, any of its elements,
any of its embodiments, or a combination thereof are gen-
erally referred to as UAIE, UAIE 100, UAIE application, or
as other similar name or reference.

Referring now to FIG. 1, an embodiment is illustrated of
Computing Device 70 (also referred to simply as computing
device or other similar name or reference, etc.) that can
provide processing capabilities used in some embodiments
of the forthcoming disclosure. Later described devices and
systems, in combination with processing capabilities of
Computing Device 70, enable universal artificial intelli-
gence functionalities for computing devices and software
applications. Various embodiments of the disclosed devices,
apparatuses, systems, and/or methods include hardware,
functions, logic, programs, and/or a combination thereof that
may be provided or implemented on any type or form of
computing or other device such as a mobile device, a
computer, a computing capable telephone, a server, a cloud
device, a gaming device, a television device, a digital
camera, a GPS receiver, a media player, an embedded
device, a supercomputer, or any other type or form of
computing or other device capable of performing the opera-
tions described herein.

In some designs, Computing Device 70 comprises hard-
ware, processing techniques or capabilities, programs, or a
combination thereof. Computing device 70 includes a cen-
tral processing unit, which may also be referred to as main
processor 11. Main processor 11 includes one or more
memory ports 10 and/or one or more input-output ports, also
referred to as 1/O ports 15, such as I/O ports 15A and 15B.
Main processor 11 may be special or general purpose.
Computing Device 70 may further include a memory, also
referred to as main memory 12, which can be connected to
the remainder of the components of Computing Device 70
via bus 5. Memory 12 can be connected to main processor
11 via memory port 10. Computing Device 70 may also
include display device 21 such as a monitor, projector,
glasses, and/or other display device. Computing Device 70
may also include Human-machine Interface 23 such as a
keyboard, a pointing device, a mouse, a touchscreen, a
joystick, and/or other input device that can be connected
with the remainder of the Computing Device 70 components
via /O control 22. In some implementations, Human-ma-
chine Interface 23 can be directly connected with bus 5 or
specific components of Computing Device 70. Computing
Device 70 may include additional optional elements, such as
one or more input/output devices 13. Main processor 11 may
include or be interfaced with cache memory 14. Storage 27
may include memory, which provides an operating system,
also referred to as OS 17, additional software 18 operating
on OS 17, and/or data space 19 in which additional data or
information can be stored. Alternative memory device 16
can be connected to the remaining components of Comput-
ing Device 70 via bus 5. Network interface 25 can also be
connected with bus 5 and be used to communicate with

US 9,443,192 Bl

59

external computing devices via a network. Some or all
described elements of Computing Device 70 can be directly
or operatively connected or coupled with each other or with
other additional elements as depicted in FIG. 1 or using any
other connection means known in art in alternate implemen-
tations.

Main processor 11 includes any logic circuitry that can
respond to and process instructions fetched from main
memory unit 12 or other element. Main processor 11 may
also include any combination of hardware and/or processing
techniques or capabilities for implementing and executing
logic functions or programs. Main processor 11 may include
a single core or a multi core processor. Main processor 11
includes the functionality for loading operating system 17
and operating any software 18 thereon. In some embodi-
ments, main processor 11 can be provided in a micropro-
cessing or a processing unit, such as, for example, Snap-
dragon processor produced by Qualcomm Inc., processor by
Intel Corporation of Mountain View, Calif., processor manu-
factured by Motorola Corporation of Schaumburg, I11.; pro-
cessor manufactured by Transmeta Corporation of Santa
Clara, Calif.; the RS/6000 processor, processor manufac-
tured by International Business Machines of White Plains,
N.Y.; processor manufactured by Advanced Micro Devices
of Sunnyvale, Calif., or any computing unit for performing
similar functions. In other embodiments, main processor 11
can be provided in a graphics processor unit (GPU), visual
processor unit (VPU), or other highly parallel processing
unit or circuit such as, for example, nVidia GeForce line of
GPUs, AMD Radeon line of GPUs, and/or others. Such
GPUs or other highly parallel processing units may provide
superior performance in processing operations on later
described neural networks. Computing Device 70 may be
based on one or more of these or any other processors
capable of operating as described herein, whether on a
mobile or embedded device, or a more conventional
machine.

Memory 12 includes one or more memory chips capable
of storing data and allowing any storage location to be
accessed by microprocessor 11, such as Static random
access memory (SRAM), Flash memory, Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Enhanced DRAM (EDRAM), synchronous
DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM,
Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM),
Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM). Memory 12 may be based on any of the above
described memory chips, or any other available memory
chips capable of operating as described herein. In some
embodiments, main processor 11 can communicate with
memory 12 via a system bus 5. In other embodiments, main
processor 11 can communicate directly with main memory
12 via a memory port 10.

Main processor 11 can communicate directly with cache
memory 14 via a connection means such as a secondary bus
which may also sometimes be referred to as a backside bus.
In some embodiments, main processor 11 can communicate
with cache memory 14 using the system bus 5. Memory 12,
1/0 device 13, and/or other components of Computing
Device 70 can be connected with any other components via
similar secondary bus, depending on design. Cache memory
14, however, may typically have a faster response time than

25

30

40

45

55

60

main memory 12 and can include a type of memory which
is considered faster than main memory 12, such as for
example SRAM, BSRAM, or EDRAM. Cache memory
includes any structure such as multilevel caches, for
example. In some embodiments, main processor 11 can
communicate with one or more I/O devices 13 via a system
bus 5. Various busses can be used to connect main processor
11 to any of the I/O devices 13, such as a VESA VL bus, an
ISA bus, an EISA bus, a MicroChannel Architecture (MCA)
bus, a PCI bus, a PCI-X bus, a PCI-Express bus, or a NuBus.
In some embodiments, main processor 11 can communicate
directly with I/O device 13 via HyperTransport, Rapid I/O,
or InfiniBand. In further embodiments, local busses and
direct communication may be mixed. For example, main
processor 11 can communicate with an I/O device 13 using
a local interconnect bus while communicating with another
1/0 device 13 directly. Similar configurations can be used for
any other components described herein.

Computing Device 70 may further include alternative
memory such as a SD memory slot, a USB memory stick, an
optical drive such as a CD-ROM drive, a CD-R/RW drive,
a DVD-ROM drive or a BlueRay disc, a hard-drive, and/or
any other device comprising non-volatile memory suitable
for storing data or installing application programs. Comput-
ing device 70 may further include a storage device 27
comprising any type or form of non-volatile memory for
storing an operating system (OS) such as any type or form
of Windows OS, Mac OS, Unix OS, Linux OS, Android OS,
iPhone OS, mobile version of Windows OS, an embedded
OS, or any other OS that can operate on Computing Device
70. Computing Device 70 may also include software 18,
and/or data space 19 for storing additional data or informa-
tion. In some embodiments, alternative memory 16 can be
used as or similar to storage device 27. Additionally, OS 17
and/or software 18 can be run from a bootable medium, such
as for example, a flash drive, a micro SD card, a bootable CD
for GNU/Linux that is available as a GNU/Linux distribu-
tion from knoppix.net, and/or other bootable medium.

Software 18 (also referred to as program, computer pro-
gram, application, software application, script, code, etc.)
comprises instructions that can provide functionality when
executed by processor 11. Software 18 can be implemented
in a high-level procedural or object-oriented programming
language, or in a low-level machine or assembly language.
Any language used can be a compiled, interpreted, or
otherwise translated language. Software 18 can be deployed
in any form including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing system. Software 18 does not necessarily
correspond to a file in a file system. A program can be stored
in a portion of a file that can hold other programs or data, in
a single file dedicated to the program, or in multiple files (i.e.
files that store one or more modules, sub programs, or
portions of code, etc.). Software 18 can be deployed on one
computer or on multiple computers (i.e. cloud, distributed,
or parallel computing, etc.), or at one site or distributed
across multiple sites interconnected by a network. In some
designs, Software 18 comprises one or more Software
Applications 120 (later described) and these terms may be
used interchangeably herein.

Network interface 25 can be utilized for interfacing
Computing Device 70 with other devices via a network
through a variety of connections including standard tele-
phone lines, wired or wireless connections, LAN or WAN
links (i.e. 802.11, T1, T3, 56 kb, X.25, etc.), broadband
connections (i.e. ISDN, Frame Relay, ATM, etc.), or a
combination thereof. Examples of networks include the

US 9,443,192 Bl

61

Internet, an intranet, an extranet, a local area network
(LAN), a wide area network (WAN), a personal area net-
work (PAN), a home area network (HAN), a campus area
network (CAN), a metropolitan area network (MAN), a
global area network (GAN), a storage area network (SAN),
virtual network, a virtual private network (VPN), Bluetooth
network, a wireless network, a wireless LAN, a radio
network, a HomePNA, a power line communication net-
work, a G.hn network, an optical fiber network, an Ethernet
network, an active networking network, a client-server net-
work, a peer-to-peer network, a bus network, a star network,
a ring network, a mesh network, a star-bus network, a tree
network, a hierarchical topology network, and/or other net-
works known in art. Network interface 25 may include a
built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, Bluetooth network adapter, WiFi network adapter,
USB network adapter, modem, and/or any other device
suitable for interfacing Computing Device 70 with any type
of network capable of communication and/or operations
described herein.

Still referring to FIG. 1, I/O devices 13 may be present in
various shapes or forms in Computing Device 70. Examples
of /0O device 13 capable of input include a joystick, a
keyboard, a mouse, a trackpad, a trackpoint, a touchscreen,
a trackball, a microphone, a drawing tablet, a glove, a tactile
input device, a video camera, and/or other input device.
Examples of /0O device 13 capable of output include a video
display, a touchscreen, a projector, a glasses, a speaker, a
tactile output device, and/or other output device. Examples
of 1/0 device 13 capable of input and output include a disk
drive, an optical storage device, a modem, a network card,
and/or other input/output device. /O device 13 can be
interfaced with processor 11 via an I/O port 15, for example.
1/0 device 13 can also be controlled by I/O control 22 in
some implementations. /O control 22 may control one or
more [/O devices such as Human-machine Interface 23 (i.e.
keyboard, pointing device, touchscreen, joystick, mouse,
optical pen, etc.). [/O control 22 enables any type or form of
a detecting device such as a video camera or microphone to
be interfaced with other components of Computing Device
70. Furthermore, /O device 13 may also provide storage
such as or similar to storage 27, and/or alternative memory
such as or similar to alternative memory 16 in some imple-
mentations. For example, Computing Device 70 may receive
handheld USB storage device such as USB flash drive line
of devices manufactured by Twintech Industry, Inc. of Los
Alamitos, Calif.

An output interface such as a graphical user interface, an
acoustical output interface, a tactile output interface, any
device driver (i.e. audio, video, or other driver), and/or other
output interface or system can be utilized to process output
from Computing Device 70 elements for conveyance on an
output device such as Display 21. In some aspects, Display
21 or other output device itself may include an output
interface for processing output from Computing Device 70
elements. Further, an input interface such as a keyboard
listener, a keypad listener, a touchscreen listener, a mouse
listener, a trackball listener, any device driver (i.e. audio,
video, keyboard, mouse, touchscreen, or other driver), a
speech recognizer, a video interpreter, and/or other input
interface or system can be utilized to process input from
Human-machine Interface 23 or other input device for use
by Computing Device 70 elements. In some aspects,
Human-machine interface 23 or other input device itself
may include an input interface for processing input for use
by Computing Device 70 elements.

40

45

55

62

Computing Device 70 may include or be connected to
multiple display devices 21. Display devices 21 can each be
of the same or different type or form. Computing Device 70
and/or its elements comprise any type or form of suitable
hardware, programs, or a combination thereof to support,
enable, or provide for the connection and use of multiple
display devices 21 or multiple detection devices. In one
example, Computing Device 70 includes any type or form of
video adapter, video card, driver, and/or library to interface,
communicate, connect, or otherwise use display devices 21.
In some aspects, a video adapter may include multiple
connectors to interface to multiple display devices 21. In
other aspects, Computing Device 70 includes multiple video
adapters, with each video adapter connected to one or more
display devices 21. In some embodiments, any portion of
Computing Device’s 70 operating system can be configured
for using multiple displays 21. In other embodiments, one or
more display devices 21 may be provided by one or more
other computing devices such as remote computing devices
connected to Computing Device 70 via a network. In some
aspects, main processor 11 can use an Advanced Graphics
Port (AGP) to communicate with one or more display
devices 21.

In some embodiments, I/O device 13 can be a bridge
between system bus 5 and an external communication bus,
such as a USB bus, an Apple Desktop Bus, an RS-232 serial
connection, a SCSI bus, a FireWire bus, a FireWire 800 bus,
an Ethernet bus, an AppleTalk bus, a Gigabit Ethernet bus,
an Asynchronous Transfer Mode bus, a HIPPI bus, a Super
HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a FibreChan-
nel bus, a Serial Attached small computer system interface
bus, and/or other bus.

Computing Device 70 can operate under the control of an
operating system 17, which may support Computing
Device’s 70 basic functions, interface with and manage
hardware resources, interface with and manage peripherals,
provide common services for application programs, sched-
ule tasks, and/or perform other functionalities. A modern
operating system enables features and functionalities such as
a high resolution display, graphical user interface (GUI),
touchscreen, cellular network connectivity (i.e. mobile oper-
ating system, etc.), Bluetooth connectivity, WiFi connectiv-
ity, global positioning system (GPS) capabilities, mobile
navigation, microphone, speaker, still picture camera, video
camera, voice recorder, speech recognition, music player,
video player, near field communication, personal digital
assistant (PDA), and/or other features, functionalities, or
applications. For example, Computing Device 70 can use
any conventional operating system, any embedded operating
system, any real-time operating system, any open source
operating system, any video gaming operating system, any
proprietary operating system, any online operating system,
any operating system for mobile computing devices, or any
other operating system capable of running on Computing
Device 70 and performing operations described herein.
Typical operating systems include: Windows XP, Windows
7, Windows 8, etc. manufactured by Microsoft Corporation
of Redmond, Wash.; Mac OS, iPhone OS, etc. manufactured
by Apple Computer of Cupertino, Calif.; OS/2 manufactured
by International Business Machines of Armonk, N.Y;
Linux, a freely-available operating system distributed by
Caldera Corp. of Salt Lake City, Utah; or any type or form
of a Unix operating system, among others. Similarly, any
operating systems such as the ones for Android devices can
be utilized, just as those of Microsoft or Apple.

Computing Device 70 can be implemented as or be part
of various different model architectures such as web ser-

US 9,443,192 Bl

63

vices, distributed computing, grid computing, cloud com-
puting, and/or other architectures or environments. For
example, in addition to the traditional desktop, server, or
mobile operating system architectures, a cloud-based oper-
ating system can be utilized to provide the structure on
which embodiments of the disclosure can be implemented.
Other aspects of Computing Device 70 can also be imple-
mented in the cloud without departing from the spirit and
scope of the disclosure. For example, memory, storage,
processing, and/or other elements can be hosted in the cloud.
In some embodiments, Computing Device 70 can be imple-
mented on multiple devices. For example, a portion of
Computing Device 70 can be implemented on a mobile
device and another portion can be implemented on wearable
electronics.

Computing Device 70 can be, or include, any mobile
device, a mobile phone, a smartphone (i.e. iPhone, Windows
phone, Blackberry, Android phone, etc.), a tablet, a personal
digital assistant (PDA), wearable electronics, implantable
electronics, or another mobile device capable of implement-
ing the functionalities described herein. In other embodi-
ments, Computing Device 70 can be, or include, an embed-
ded device, which can be any device or system with a
dedicated function within another device or system. Embed-
ded systems range from the simplest ones dedicated to one
task with no user interface to complex ones with advanced
user interface that may resemble modern desktop computer
systems. Simple embedded devices can use buttons, light
emitting diodes (LEDs), graphic or character LCDs with a
simple menu system. More sophisticated devices can use a
graphical screen with touch sensing or screen-edge buttons
where the meaning of the buttons changes with the screen.
Examples of devices comprising an embedded device
include a mobile telephone, a personal digital assistant
(PDA), a gaming device, a media player, a digital still or
video camera, a pager, a television device, a set-top box, a
personal navigation device, a global positioning system
(GPS) receiver, a portable storage device (i.e. a USB flash
drive, etc.), a digital watch, a DVD player, a printer, a
microwave oven, a washing machine, a dishwasher, a gate-
way, a router, a hub, an automobile entertainment system, an
automobile navigation system, a refrigerator, a washing
machine, a factory automation device, an assembly line
device, a factory floor monitoring device, a thermostat, an
automobile, a factory controller, a telephone, a network
bridge, and/or other devices. An embedded device can
operate under control of an operating system for embedded
devices such as MicroC/OS-1I, QNX, VxWorks, eCos,
TinyOS, Windows Embedded, Embedded Linux, and/or
other embedded device operating systems.

Computing Device 70 may include any combination of
processors, operating systems, input/output devices, and/or
other elements to implement the device’s purpose. In one
example, Computing Device 70 comprises a Snapdragon by
Qualcomm. Inc., or Tegra processors by nVidia, or any other
mobile device processor or a microprocessor for a similar
application. Computing Device 70 can be operated under the
control of the Android OS, iPhone OS, Palm OS, or any
other operating system for a similar purpose. Computing
Device 70 may also include a stylus input device as well as
a five-way navigator device. In another example, Computing
Device 70 comprises a Wii video game console released by
Nintendo Co. operating an es operating system. /O devices
may include a video camera or an infrared camera for
recording or tracking movements of a player or a participant
of a Wii video game. Other I/O devices may include a
joystick, a keyboard, or an RF wireless remote control

15

25

30

35

40

45

50

55

64

device. Similarly, Computing Device 70 can be tailored to
any workstation, mobile or desktop computer, laptop or
notebook computer, smartphone device or tablet, server,
handheld computer, gaming device, embedded device, or
any other computer or computing product, or other type or
form of computing or telecommunication device that has
sufficient processor power and memory capacity to perform
the functionalities described herein.

Various implementations of the disclosed devices, appa-
ratuses, systems, and/or methods can be realized in digital
electronic circuitry, integrated circuitry, specially designed
application specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), computer hardware, firm-
ware, programs, virtual machines, and/or combinations
thereof including their structural, logical, and/or physical
equivalents.

The disclosed devices, apparatuses, systems, and/or meth-
ods may include clients and servers. A client and server are
generally remote from each other and typically interact
through a network. The relationship of a client and server
may arise by virtue of computer programs running on the
respective computers and having a client-server relationship
to each other.

The disclosed devices, apparatuses, systems, and/or meth-
ods can be implemented in a computing system that includes
aback end component, a middleware component, a front end
component, or any combination thereof. The components of
the system can be interconnected by any form or medium of
digital data communication such as, for example, a network.

Computing Device 70 may include or be interfaced with
a computer program product comprising instructions or
logic encoded on a computer-readable medium that, when
performed in a computing device, programs a processor to
perform the operations and/or functionalities disclosed
herein. For example, a computer program can be provided or
encoded on a computer-readable medium such as an optical
medium (i.e. DVD-ROM, etc.), flash drive, hard drive, any
memory, or other medium such as firmware or microcode in
one or more ROM, RAM, or PROM chips. Computer
program can be installed onto a computing device to cause
the computing device to perform the operations and/or
functionalities disclosed herein. As used in this disclosure,
machine-readable medium, computer-readable medium, or
other such terms may refer to any computer program prod-
uct, apparatus, and/or device for providing instructions
and/or data to a programmable processor. As such, machine-
readable medium includes any medium that can send or
receive machine instructions as a machine-readable signal.
The term machine-readable signal may refer to any signal
used for providing instructions and/or data to a program-
mable processor. Examples of a machine-readable medium
include a volatile and/or non-volatile medium, a removable
and/or non-removable medium, a communication medium, a
storage medium, and/or other medium. A communication
medium, for example, can transmit computer readable
instructions and/or data in a modulated data signal such as
a carrier wave or other transport technique, and may include
any other form of information delivery medium known in
art. A non-transitory machine-readable medium comprises
all machine-readable media except for a transitory, propa-
gating signal.

Any of the described files can reside in any repository
accessible by an embodiment of the disclosed devices,
apparatuses, systems, and/or methods. In each instance
where a specific file or file type is mentioned, other files, file
types, or formats can be substituted.

US 9,443,192 Bl

65

Where a reference to a data structure is used herein, it
should be understood that any variety of data structures can
be used such as, for example, array, list, linked list, doubly
linked list, queue, tree, heap, graph, map, grid, matrix,
multi-dimensional matrix, table, database, database manage-
ment system (DBMS), file, neural network, and/or any other
type or form of a data structure including a custom one. A
data structure may include one or more fields or data fields
that are part of or associated with the data structure. A field
or data field may include a data, an object, a data structure,
and/or any other element or a reference/pointer thereto. A
data structure can be stored in one or more memories, files,
or other repositories. A data structure and/or any elements
thereof, when stored in a memory, file, or other repository,
may be stored in a different arrangement than the arrange-
ment of the data structure and/or any elements thereof. For
example, a sequence of instruction sets or other elements
herein can be stored in an arrangement other than a sequence
in a memory, file, or other repository.

Where a reference to a repository is used herein, it should
be understood that a repository may be or include one or
more files or file systems, one or more storage locations or
structures, one or more storage systems, one or more data
structures or objects, one or more memory locations or
structures, and/or other storage, memory, or data arrange-
ments.

Where a reference to an interface is used herein, it should
be understood that the interface comprises any hardware,
device, system, program, method, and/or combination
thereof that enable direct or operative coupling, connection,
and/or interaction of the elements between which the inter-
face is indicated. A line or arrow shown in the figures
between any of the depicted elements comprises such inter-
face. Examples of an interface include a direct connection,
an operative connection, a wired connection (i.e. wire, cable,
etc.), a wireless connection, a device, a network, a bus, a
circuit, a firmware, a driver, a bridge, a program, a combi-
nation thereof, and/or others.

Where a reference to an element coupled or connected to
a processor is used herein, it should be understood that the
element may be part of or operating on the processor. Also,
one of ordinary skill in art will understand that an element
coupled or connected to another element may include the
element in communication or any other interactive relation-
ship with the other element. Furthermore, an element
coupled or connected to another element can be coupled or
connected to any other element in alternate implementa-
tions. Terms coupled, connected, interfaced, or other such
terms may be used interchangeably herein.

Where a mention of a function, method, routine, subrou-
tine, or other such procedure is used herein, it should be
understood that the function, method, routine, subroutine, or
other such procedure comprises a call, reference, or pointer
to the function, method, routine, subroutine, or other such
procedure.

Where a mention of data, object, data structure, item,
element, or thing is used herein, it should be understood that
the data, object, data structure, item, element, or thing
comprises a reference or pointer to the data, object, data
structure, item, element, or thing.

The term operating or operation, when used casually, can
refer to processing, executing, or other such actions, and
vice versa. Therefore, the terms operating, operation, pro-
cessing, executing, or other such actions may be used
interchangeably herein.

10

15

20

25

30

35

40

45

50

55

60

65

66

The term collection of elements can refer to plurality of
elements without implying that the collection is an element
itself.

Referring to FIG. 2, an embodiment of UAIE imple-
mented on Computing Device 70 is illustrated. UAIE com-
prises interconnected Acquisition and Modification Interface
110 and Artificial intelligence Unit 130. UAIE is coupled
with Software Application 120, Memory 12, and Storage 27.
Display 21 and Human-machine interface 23 are also pro-
vided in Computing Device 70 as shown. Other additional
elements can be included as needed, or some of the disclosed
ones can be excluded, or a combination thereof can be
utilized in alternate embodiments.

UAIE comprises any hardware, programs, or a combina-
tion thereof. UAIE comprises the functionality for learning
the operation of a computing device or Software Application
120. UAIE comprises the functionality for storing this
knowledge in a knowledgebase, neural network, or other
repository. UAIE comprises the functionality for anticipat-
ing a computing device’s or Software Application’s 120
operations. UAIE comprises the functionality for enabling
autonomous operation of a computing device or Software
Application 120 with partial, minimal, or no user input.
UAIE comprises the functionality for interfacing with or
attaching to a computing device or Software Application
120. UAIE comprises the functionality for obtaining instruc-
tions, data, and/or other information used, implemented,
and/or executed by a computing device or Software Appli-
cation 120. UAIE also comprises other functionalities dis-
closed herein. In some embodiments, UAIE can be imple-
mented in a device (i.e. microchip, circuitry, electronic
device, computing device, special or general purpose pro-
cessor, etc.) or system that comprises (i.e. hard coded,
internally stored, etc.) or is provided with (i.e. externally
stored, etc.) instructions for implementing UAIE function-
alities. As such, UAIE and/or any of its elements comprise
the processing, memory, storage, and/or other features and
embodiments of Processor 11 and/or other elements of
Computing Device 70. Such device or system can operate on
its own, be embedded in another device or system, work in
combination with other devices or systems, or be available
in any other configuration. In other embodiments, UAIE can
be implemented as a computer program and executed by one
or more Processors 11 as previously described. As such,
UAIE and/or any of its elements can be implemented in one
or more modules or units of a single or multiple computer
programs. In yet other embodiments, UAIE may be included
in Alternative Memory 16 that provides instructions for
implementing UAIE functionalities to one or more Proces-
sors 11. In further embodiments, UAIE can be implemented
as network, web, distributed, cloud, or other such applica-
tion accessed on one or more remote computing devices via
Network Interface 25, such remote computing devices
including processing capabilities and instructions for imple-
menting UAIE functionalities. In some aspects, UAIE may
be attached to or interfaced with any computing device or
software application, UAIE may be included as a feature of
an operating system running on a computing device, UAIE
may be built (i.e. hard coded, etc.) into any computing
device or software application, and/or UAIE may be avail-
able in any other configuration to provide its functionalities.

In one example, UAIE can be interfaced or connected
with one or more registers (later described) of Processor 11,
thereby enabling UAIE to read and change the registers to
implement UAIE functionalities. In another example, UAIE
can be installed as a separate computer program that attaches

US 9,443,192 Bl

67

to or interfaces with, inspects, and/or modifies another
computer program or application to implement UAIE func-
tionalities.

In a further example, the teaching presented by the
disclosure can be implemented in a device or system for
autonomous application operating. The device or system
may include a processor coupled to a memory unit. The
device or system may further include an application, running
on the processor, for performing operations on a computing
device. The device or system may further include an inter-
face for receiving a first instruction set and a second instruc-
tion set, the interface further configured to receive a new
instruction set, wherein the first, the second, and the new
instruction sets are executed by the processor and are part of
the application for performing operations on the computing
device. The device or system may further include a knowl-
edgebase, neural network, or other repository configured to
store at least one portion of the first instruction set and at
least one portion of the second instruction set, the knowl-
edgebase, neural network, or other repository comprising a
plurality of portions of instruction sets. The device or system
may further include a decision-making unit configured to
compare at least one portion of the new instruction set with
at least one portion of the first instruction set from the
knowledgebase, neural network, or other repository. The
decision-making unit may also be configured to determine
that there is a substantial similarity between the new instruc-
tion set and the first instruction set from the knowledgebase,
neural network, or other repository. The processor may then
be caused to execute the second instruction set from the
knowledgebase, neural network, or other repository. Any of
the operations of the described elements can be performed
repeatedly and/or in different orders in alternate embodi-
ments. Specifically, in this example, Processor 11 can be
implemented as a device or processing circuit that receives
Software Application’s 120 instructions, data, and/or other
information from Memory 12. Processor 11 may use, imple-
ment, or execute Software Application’s 120 instructions,
data, and/or other information. Software Application 120
may receive User’s 50 operating instructions via Human-
machine Interface 23 or another input device, perform
corresponding operations, and produce results that can be
presented via Display 21 or another output device. Acqui-
sition and Modification Interface 110 can also be imple-
mented as a device or processor that receives or obtains
Software Application’s 120 instructions, data, and/or other
information used, implemented, and/or executed by Proces-
sor 11. Artificial intelligence Unit 130 can also be imple-
mented as a device or processor that comprises Knowledge-
base 530 (later described) or Neural Network 850 (later
described), Decision-making Unit 540 (later described),
and/or other elements. Acquisition and Modification Inter-
face 110 may provide Software Application’s 120 instruc-
tions, data, and/or other information to Artificial Intelligence
Unit 130. Artificial Intelligence Unit 130 may learn the
operation of Software Application 120 by storing the knowl-
edge of its operation into Knowledgebase 530, Neural
Network 850, or other repository. Decision-making Unit 540
may then anticipate or determine Software Application’s
120 instructions, data, and/or other information most likely
to be used, implemented, or executed in the future. Acqui-
sition and Modification Interface 110 may modify Software
Application 120 or cause Processor 11 to implement or
execute the anticipated instructions, data, and/or other infor-
mation, thereby enabling autonomous operation of a com-
puting device or Software Application 120 with partial,
minimal, or no user input. Acquisition and Modification

10

15

20

25

30

35

40

45

50

55

60

65

68

interface 110 (or its functionalities), Artificial intelligence
Unit 130 (or its functionalities), and/or other disclosed
elements can be implemented as separate or integrated
hardware components or processors, they can be imple-
mented as a single program or objects/modules/functions of
one or more programs operating on Processor 11, they can
be provided in other suitable configurations, or a combina-
tion thereof in alternate embodiments. In some designs,
Artificial Intelligence Unit 130 comprises some or all of the
functionalities of other disclosed elements such as Acquisi-
tion and Modification Interface 110 in which case the
elements whose functionalities are integrated with Artificial
Intelligence Unit 130 can be omitted. The device or system
for autonomous application operating can also include any
actions or operations of any of the disclosed methods such
as methods 6100, 6200, 6300, 6400, 7100, 7200, 7300, and
7400 (all later described).

In a further example, UDMI can be implemented as a Java
Micro Edition (ME), Java Standard Edition (SE), or other
Java Edition (also referred to as Java or Java platform)
application or program. Java ME is generally designed for
mobile and embedded devices that provides a robust and
flexible environment for application programs including
flexible user interfaces, robust security, built-in network
protocols, powerful application programming interfaces,
database or DBMS connectivity and interfacing functional-
ities, file manipulation capabilities, support for networked
and offline applications, and/or other features or function-
alities. Application programs based on Java ME can be
portable across many devices, yet leverage each device’s
native capabilities. The feature-rich Java SE is generally
designed for traditional computing devices, but more mobile
and embedded devices continue to support it. Java SE
supports the feature sets of most smartphones and a broad
range of high-end connected devices while still fitting within
their resource constraints. Java platforms include one or
more basic application programming interfaces (APIs) and
virtual machine features comprising a runtime environment
for application programs such as some embodiments of
UDMI. Java platforms provide a wide range of user-level
functionalities that can be implemented in application pro-
grams such as an Internet browser, displaying text and
graphics, playing and recording audio content, displaying
and recording visual content, communicating with another
computing device, and/or other functionalities. In one
example, UDMI can be implemented as a Xlet within a Java
platform. A Xlet may include a Java applet or application
configured to execute on a mobile, embedded, and/or other
computing device. UDMI is programming language, plat-
form, and operating system independent. Programming lan-
guages that can be used in addition to Java include C, C++,
Cobol, Python, Java Script, Tcl, Visual Basic, Pascal, VB
Script, Perl, PHP, Ruby, and/or other programming lan-
guages capable of implementing the functionalities
described herein.

Software Application 120 (also referred to as application,
software, program, script, or other such reference) com-
prises the functionality for performing operations on Com-
puting Device 70, and/or other functionalities. As Software
Application 120 provides functionality or operations on
Computing Device 70 and Computing Device 70 executes
Software Application 120 to gain the functionality or opera-
tions, the two may be used interchangeably herein in some
contexts. Software Application 120 comprises a collection
of instructions (i.e. instruction sets, etc.), which upon imple-
mentation or execution by processor, may cause Computing
Device 70 to perform operations or tasks for which Software

US 9,443,192 Bl

69

Application 120 is designed. Instructions or instruction sets
may include source code, byte code, compiled, interpreted,
or otherwise translated code, machine or object code, and/or
other code. Software Application 120 can be delivered in
various forms such as, for example, executable files, librar-
ies, scripts, plugins, addons, applets, interfaces, console
applications, web applications, application service provider
(ASP) type applications, operating systems, and/or other
forms. The disclosed devices, apparatuses, systems, and/or
methods are independent of the type of programming lan-
guage, platform, or compiler, interpreter, or other translator
used to implement Software Application 120. The following
is a very simple example of Software Application 120
created in Java programming language.

public class HelloWorldApp {

public static void main(String[] args) {

System.out.printIn(“Hello World!™); // Display the
string

}

}

In some embodiments, Software Application 120 can be
an abstraction layer in a computing system and, as such,
Software Application 120 can interact or interface with other
layers. For example, Software Application 120 can be an
abstraction layer that includes user interface and performs
desired user operations, database or DBMS can be another
layer that stores data needed in Software Application 120,
and/or other abstraction layers can perform other tasks in the
overall computing system. In this type of layered architec-
ture, Software Application 120 may interact or interface with
the underlying database or DBMS, and/or other abstraction
layers, which themselves can implement artificial intelli-
gence techniques described herein. Software Application
120 may be one of the applications stored in Software 18 and
it includes all features, functionalities, and embodiments of
Software 18.

User 50 (also referred to simply as user, etc.) comprises a
human user or non-human user. A non-human User 50
includes any device, system, program, and/or other mecha-
nism for controlling or manipulating Software Application
120, and/or other disclosed elements. User 50 may issue an
operating instruction to Software Application 120 respon-
sive to which Software Application’s 120 internal instruc-
tions or instruction sets may be executed to perform a
desired operation on Computing Device 70. User’s 50
operating instructions comprise any user inputted data (i.e.
values, text, symbols, etc.), directions (i.e. move right, move
up, move forward, copy an item, click on a link, etc.),
instructions (i.e. manually inputted instructions, etc.), and/or
other data, information, instructions, operations, and/or
inputs. The term operating instruction when used casually
may refer to an instruction (i.e. instruction set, etc.) to be
executed in Software Application 120, and User 50 can issue
both an operating instruction to Software Application 120 as
well as an instruction to be executed in Software Application
120. Therefore, the terms operating instruction and instruc-
tion may be used interchangeably herein in some contexts.
A non-human User 50 can utilize more suitable interfaces
instead of, or in addition to, Human-machine Interface 23
and Display 21 for controlling Software Application 120
and/or other disclosed elements. Examples of such inter-
faces include application programming interface (API),
bridge (i.e. bridge between applications or devices, etc.),
driver, socket, direct or operative connection, handle, and/or
other interfaces.

Referring to FIG. 3, an embodiment is illustrated with
typical elements or steps that lead to Software Application’s

15

20

40

45

65

70

120 execution on Computing Device 70. Source Code 201
can be written in a high-level programming language (i.e.
Java, C++, etc.), a low-level programming language (i.e.
assembly language etc.), or machine language. In some
embodiments, Compiler, Interpreter, or Other Translator 202
is utilized to convert source code directly into machine code.
In further embodiments, Linker 203 is utilized to link any
libraries, packages, objects, or other needed elements with
Software Application 120. In yet some embodiments,
Loader 204 is utilized to load Software Application 120
including any linked libraries, packages, objects, or other
needed elements into Memory 12. In-memory Machine
Code 205 can then be executed by Processor 11. In-memory
Machine Code 205 may include binary values forming
processor instructions (i.e. instruction sets, etc.) that can
change computer state. For example, an instruction or
instruction set can perform a computation, change a value
stored in a particular storage location, cause something to
appear on a display of the computer system, and/or perform
other operations. Additional elements or steps such as virtual
machine, bytecode compiler, interpreter, or other translator,
pre-processor, and/or other elements can be included, or
some of the disclosed ones can be excluded, or a combina-
tion thereof can be utilized in alternate implementations of
Software Application’s 120 creation and/or execution. In
one example, source code may be compiled, interpreted or
otherwise translated into bytecode that a virtual machine or
other system can convert into machine code. In another
example, source code may be compiled, interpreted or
otherwise translated into any intermediary code such as
assembly or other code that assembler, compiler, interpreter,
translator, or other system can convert into machine code.

Software Application 120 comprises instructions or
instruction sets, which, when processed or executed by
Processor 11, can cause Computing Device 70 to perform
corresponding operations as previously described. When the
disclosed UAIE functionalities are applied on Computing
Device 70 or Software Application 120, Computing Device
70 or Software Application 120 may become autonomous
computing device or software application (collectively or
separately referred to as autonomous application as per
context). Therefore, autonomous application comprises
Computing Device 70 and/or Software Application 120
along with UAIE or UAIE functionalities. UAIE may take
control from, share control with, or release control to
Computing Device 70 and/or Software Application 120 or
its objects to implement autonomous application operation.
In some aspects, autonomous application comprises antici-
patory instructions (i.e. instruction sets, etc.) that user did
not issue or cause to be executed. Such anticipatory instruc-
tions (i.e. instruction sets, etc.) include instructions that user
may want or is likely to issue or cause to be executed.
Anticipatory instructions or instruction sets can be generated
by UAIE or any of its elements. As such, an autonomous
application may include some or all original instructions (i.e.
instruction sets, etc.) of Software Application 120 and/or any
anticipatory instructions (i.e. instruction sets, etc.) generated
by UAIE. Therefore, autonomous application operating may
include executing some or all original instructions or
instruction sets of Software Application 120 and/or any
anticipatory instructions or instruction sets generated by
UAIE. In some embodiments, UAIE can overwrite or
rewrite the original instructions (i.e. instruction sets, etc.) of
Software Application 120 with UAIE-generated instructions
(i.e. instruction sets, etc.). In other embodiments, UAIE can
insert or embed UAIE-generated instructions (i.e. instruc-
tion sets, etc.) among the original instructions (i.e. instruc-

US 9,443,192 Bl

71

tion sets, etc.) of Software Application 120. In further
embodiments, UAIE can branch, redirect, or jump to UAIE-
generated instructions (i.e. instruction sets, etc.) from the
original instructions (i.e. instruction sets, etc.) of Software
Application 120.

In some embodiments, autonomous application operating
can be implemented with partial, minimal, or no user input.
In an example involving autonomous application operating
with partial user input, a user can issue or cause to be
executed one or more instructions or instruction sets and
UAIE may anticipate subsequent one or more instructions or
instruction sets. In an example involving autonomous appli-
cation operating with minimal user input, a user can issue or
cause to be executed a portion of an instruction (i.e. instruc-
tion sets, etc.) and UAIE may anticipate the rest of the
instruction (i.e. instruction sets, etc.) along with any subse-
quent instructions or instruction sets. In an example involv-
ing autonomous application operating with no user input,
UAIE may anticipate any instructions (i.e. instruction sets,
etc.) based on the disclosed UAIE functionalities. In other
embodiments, autonomous application operating comprises
determining, by UAIE, a next instruction (i.e. instruction set,
etc.) to be executed prior to the user issuing or causing to be
executed the next instruction (i.e. instruction set, etc.). In
further embodiments, autonomous application operating
comprises determining, by UAIE, a next instruction (i.e.
instruction set, etc.) to be executed prior to the system
receiving the next instruction (i.e. instruction set, etc.). In yet
further embodiments, autonomous application operating
includes a partially or fully autonomous operating. In an
example involving partially autonomous application oper-
ating, a user confirms UAIE-generated instructions or
instruction sets prior to their execution. In an example
involving fully autonomous application operating, UAIE-
generated instructions (i.e. instruction sets, etc.) are
executed without user or other system confirmation. In
further embodiments, autonomous application operating
comprises generating, by UAIE, and executing, by a pro-
cessor, instructions (i.e. instruction sets, etc.) related to or
associated with an object, a data structure, a repository, a
thread, or a function of the application. In yet other embodi-
ments, autonomous application operating comprises gener-
ating instructions (i.e. instruction sets, etc.) by a non-UAIE
system or process, and executing the instructions (i.e.
instruction sets, etc.) by a processor.

Referring to FIG. 4, an embodiment of Acquisition and
Modification interface 110 is illustrated. Acquisition and
Modification interface 110 comprises the functionality for
interfacing between Artificial Intelligence Unit 130 and
Software Application 120 or Computing Device 70 ele-
ments, and/or other functionalities. Acquisition and Modi-
fication Interface 110 comprises the functionality for attach-
ing Artificial Intelligence Unit 130 to Software Application
120 or Computing Device 70 elements. Additionally, Acqui-
sition and Modification Interface 110 comprises the func-
tionality to direct or control the flow of instructions, data,
and/or other information among the elements of UAIE and
Software Application 120 or Computing Device 70 ele-
ments. In some aspects, Acquisition and Modification Inter-
face 110 includes Instruction Acquisition Unit 111 and
Application Modification Unit 112. Other additional ele-
ments can be included as needed, or some of the disclosed
ones can be excluded, or a combination thereof can be
utilized in alternate embodiments.

Instruction Acquisition Unit 111 comprises the function-
ality for obtaining or receiving Software Application’s 120
instructions (i.e. instruction sets, etc.), data, and/or other

10

15

20

25

30

35

40

45

50

55

60

65

72

information, and/or other functionalities. Instruction Acqui-
sition Unit 111 comprises the functionality for obtaining
Software Application’s 120 instructions (i.e. instruction sets,
etc.), data, and/or other information during Software Appli-
cation’s 120 execution (i.e. runtime). An instruction may
include any computer command, instruction set, operation,
statement, or other instruction used in an application. There-
fore, the terms instruction, command, instruction set, opera-
tion, statement, or other such terms may be used inter-
changeably herein. Data may include user inputs, variables,
parameters, values, and/or other data used in an application.
Other information may include objects, data structures,
contextual information, and/or other information used in an
application. Instruction Acquisition Unit 111 also comprises
the functionality for attaching to or interfacing with Soft-
ware Application 120 and/or Computing Device 70 ele-
ments. In one example, Instruction Acquisition Unit 111
comprises the functionality to access and/or read runtime
engine/environment, virtual machine, operating system,
compiler, just-in-time (JIT) compiler, interpreter, translator,
execution stack, program counter, memory, processor reg-
isters, files, objects, data structures, and/or other computing
system elements. In another example, Instruction Acquisi-
tion Unit 111 comprises the functionality to access and/or
read functions, methods, procedures, routines, subroutines,
and/or other elements of an application. In a further
example, Instruction Acquisition Unit 111 comprises the
functionality to access and/or read source code, bytecode,
compiled, interpreted, or otherwise translated code, machine
code, and/or other code. In a further example, Instruction
Acquisition Unit 111 comprises the functionality to access
and/or read values, variables, parameters, and/or other data
or information. Instruction Acquisition Unit 111 also com-
prises the functionality for transmitting the obtained instruc-
tions, data, and/or other information to Artificial Intelligence
Unit 130. As such, Instruction Acquisition Unit 111 provides
input into Artificial Intelligence Unit 130 for knowledge
structuring, decision making, anticipating, and/or other
functionalities later in the process.

In some embodiments, UAIE can be selective in learning
Software Application’s 120 instructions, data, and/or other
information to those implemented, utilized, or related to a
specific object, data structure, repository, thread, function,
and/or other specific element. In one example, Instruction
Acquisition Unit 111 can obtain Software Application’s 120
instructions, data, and/or other information implemented,
utilized, or related to a certain object in an object oriented
Software Application 120. In another example, Instruction
Acquisition Unit 111 can obtain moves, behaviors, and/or
other actions implemented, utilized, or related to a player’s
character or avatar in a computer game application. In a
further example, Instruction Acquisition Unit 111 can obtain
user’s clicks implemented, utilized, or related to mouse click
event handler in a web browser application. In a further
example, Instruction Acquisition Unit 111 can obtain
instructions, data, and/or other information implemented,
utilized, or related to a specific document in a word pro-
cessing application. In a further example, Instruction Acqui-
sition Unit 111 can obtain database instructions, data, and/or
other information implemented, utilized, or related to a
specific database in a database management system (DBMS)
application.

Instruction Acquisition Unit 111 can employ various
techniques for attaching to and/or obtaining Software Appli-
cation’s 120 instructions, data, and/or other information. In
one example, Instruction Acquisition Unit 111 can attach to
and/or obtain Software Application’s 120 instructions, data,

US 9,443,192 Bl

73

and/or other information through tracing or profiling, or
other techniques. Tracing or profiling is used in software
design as a technique of outputting an application’s instruc-
tions, data, and/or other information during the application’s
execution (runtime). Tracing or profiling may include add-
ing trace code (i.e. instrumentation, etc.) to an application
and/or outputting trace information to a specific target. The
outputted trace information (i.e. Software Application’s 120
instructions, data, and/or other information, etc.) can then be
provided to or recorded into a file, a table, a database, a
DBMS, a data structure, a repository, an application, and/or
other system or target that may receive such trace informa-
tion. As such, Instruction Acquisition Unit 111 can utilize
tracing or profiling to obtain Software Application’s 120
instructions, data, and/or other information and provide
them as input into Artificial Intelligence Unit 130 that may
structure them into knowledge for future autonomous opera-
tion of Software Application 120. In some aspects, instru-
mentation can be performed in source code, bytecode,
compiled, interpreted, or otherwise translated code, machine
code, and/or other code. In other aspects, instrumentation
can be performed in various elements of a computing system
such as memory, virtual machine, runtime engine/environ-
ment, operating system, compiler, interpreter, translator,
processor registers, execution stack, program counter, and/
or other elements. In yet other aspects, instrumentation can
be performed in various abstraction layers of a computing
system such as in software layer (i.e. Software Application
120, etc.), in virtual machine (if VM is used), in operating
system, in processor, and/or in other layers or areas that may
exist in a particular computing system implementation. In
yet other aspects, instrumentation can be performed at
various time periods in an application’s execution such as
source code write time, compile time, interpretation time,
translation time, linking time, loading time, runtime, and/or
other time periods. In yet other aspects, instrumentation (and
therefore knowledge structuring) can be performed at vari-
ous granularities or code segments such as some or all lines
of code, some or all statements, some or all instructions (i.e.
instruction sets, etc.), some or all basic blocks, some or all
functions/routines/subroutines, and/or some or all other code
segments.

In some embodiments, Software Application 120 can be
automatically instrumented. In one example, Instruction
Acquisition Unit 111 can access Software Application’s 120
source code, bytecode, or machine code and select instru-
mentation points of interest. Selecting instrumentation
points may include finding portions of the source code,
bytecode, or machine code corresponding to function calls,
function entries, function exits, object creations, object
destructions, event handler calls, new lines (i.e. to instru-
ment all lines of code, etc.), thread creations, throws, and/or
other portions of code. Instrumentation code can then be
inserted at the instrumentation points of interest to output
Software Application’s 120 instructions, data, and/or other
information. The instrumented Software Application 120
may then be executed at which time the inserted instrumen-
tation code is executed to perform its functionalities. In
response to executing instrumentation code, Software Appli-
cation’s 120 instructions, data, and/or other information may
be received by Instruction Acquisition Unit 111 and pro-
vided to Artificial Intelligence Unit 130. In some aspects,
Software Application’s 120 source code, bytecode, or
machine code can be dynamically instrumented. For
example, instrumentation code can be dynamically inserted
into Software Application 120 at runtime. Any instrumen-

10

15

20

25

30

35

40

45

50

55

60

74

tation may also include additional instrumentation code to
enable, disable, reset, or otherwise manage or control spe-
cific instrumentation code.

In other embodiments, Software Application 120 can be
manually instrumented. In one example, a programmer can
instrument a function call by placing an instrumenting
instruction immediately after the function call as in the
following example.

loadPage(“http://www.youtube.com”,
tabs.activeTab);

traceApplication(‘loadPage(“http://www.youtube.com”,

activeWindow.tabs.activeTab);’);

In another example, an instrumenting instruction can be
placed immediately before the function call, or at the begin-
ning, end, or anywhere within the function itself. A pro-
grammer may instrument all function calls or only function
calls of interest. In yet another example, a programmer can
instrument all lines of code within Software Application 120
or only code lines of interest. Instrumenting all lines of code
may provide the most detail about the operation of Software
Application 120. In yet another example, a programmer can
instrument other elements or operations utilized or imple-
mented within Software Application 120 such as objects
and/or any of their functions or operations, event handlers
and/or any of their functions or operations, memory and/or
any of its functions or operations (i.e. allocation, etc.),
threads and/or any of their functions or operations, and/or
other such elements or operations. Similar instrumentation
as in preceding examples can be performed automatically or
dynamically as previously described. In some embodiments
where manual code instrumentation is utilized, Instruction
Acquisition Unit 111 can optionally be omitted and Software
Application’s 120 instructions, data, and/or other informa-
tion may be transmitted directly to Artificial Intelligence
Unit 130.

One of ordinary skill in art will understand that, while all
possible variations of the techniques to obtain Software
Application’s 120 instructions, data, and/or other informa-
tion are too voluminous to list, all of these techniques are
within the scope of this disclosure in various implementa-
tions. Various computing systems and/or platforms may
provide native tools for application tracing or profiling, or
other techniques. Also, independent software vendors may
provide portable tools with similar functionalities that can be
utilized across different computing systems and/or plat-
forms. These native and portable tools may provide a wide
range of functionalities to obtain runtime and other infor-
mation on a software application such as outputting custom
text messages, logging application or system errors and
warnings, outputting objects or data structures, outputting
binary data, tracing function/routine/subroutine invocations,
following and outputting variable values, outputting thread
or process behaviors, performing live application monitor-
ing via network or pipes, outputting call or other stacks,
outputting processor registers, providing runtime memory
access, and/or other capabilities. In some aspects, obtaining
an application’s instructions, data, and/or other information
comprises introspection, which includes the ability to exam-
ine the type or properties of an object at runtime.

In one example, attaching to and/or obtaining an appli-
cation’s instructions, data, and/or other information can be
implemented through the .NET platform’s native tools for
application tracing or profiling such as System.Diagnostic-
s.Trace, System.Diagnostics.Debug, and System.Diagnos-
tics. TraceSource classes for tracing execution flow, and
System.Diagnostics.Process, System.Diagnostics.Event-
Log, and System.Diagnostics.PerformanceCounter classes

activeWindow.

US 9,443,192 Bl

75

for profiling code, accessing local and remote processes,
starting and stopping system processes, and interacting with
Windows event logs, etc. For example, a set of trace
switches can be created that output an application’s infor-
mation. The switches can be configured using the .config
file. For a Web application, this may typically be Web.config
file associated with the project. In a Windows application,
this file may typically be named applicationName.exe.con-
fig. Trace code can be added to the application code auto-
matically or manually as previously described. Appropriate
listener can be created where the trace output is received.
Trace code may output trace messages to a specific target
such as a file, a log, a database, a DBMS, an object, a data
structure, and/or other repository or system. Instruction
Acquisition Unit 111 or Artificial intelligence Unit 130 can
then read or obtain the trace information from these targets.
In some aspects, trace code may output trace messages
directly to instruction Acquisition Unit 111. In other aspects,
trace code may output trace messages directly to Artificial
Intelligence Unit 130. In the case of outputting trace mes-
sages to Instruction Acquisition Unit 111 or directly to
Artificial Intelligence Unit 130, custom listeners can be built
to accommodate these specific targets. Other platforms,
tools, and/or techniques can provide equivalent or similar
functionalities as the above described ones.

In another example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through the .NET platform’s Profiling API
that can be used to create a custom profiler application for
tracing, monitoring, interfacing with, and/or managing a
profiled application. The Profiling API provides an interface
that includes methods to notify the profiler of events in the
profiled application. The Profiling API may also provide an
interface to enable the profiler to call back into the profiled
application to obtain information about the state of the
profiled application. The Profiling API may further provide
call stack profiling functionalities. Call stack (also referred
to as execution stack, control stack, runtime stack, machine
stack, the stack, etc.) includes a data structure that can store
information about active subroutines of a computer pro-
gram. The Profiling API may provide a stack snapshot
method, which enables a trace of the stack at a particular
point in time. The Profiling API may also provide a shadow
stack method, which tracks the call stack at every instant. A
shadow stack can obtain function arguments, return values,
and information about generic instantiations. A function
such as FunctionEnter can be utilized to notify the profiler
that control is being passed to a function and can provide
information about the stack frame and function arguments.
A function such as Functionleave can be utilized to notify
the profiler that a function is about to return to the caller and
can provide information about the stack frame and function
return value. An alternative to call stack profiling includes
call stack sampling in which the profiler can periodically
examine the stack. The method at the top of the stack may
be assumed to have been running since the last examination
and can be outputted as a trace message. In some aspects, the
Profiling API enables the profiler to change the in-memory
code stream for a routine before it is just-in-time (JIT)
compiled where the profiler can dynamically add instrumen-
tation code to all or particular routines of interest. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through Java platform’s APIs for applica-
tion tracing or profiling such as Java Virtual Machine

10

20

25

30

35

40

45

50

55

60

76

Profiling Interface (JVMPI), Java Virtual Machine Tool
interface (JVMTI), and/or other APIs or tools. These APIs
can be used for instrumentation of an application, for
notification of Java Virtual Machine (VM) events, and/or
other functionalities. One of the profiling techniques that can
be utilized includes bytecode instrumentation. The profiler
can insert bytecodes into all or some of the classes. In
application execution profiling, for example, these byte-
codes may include methodEntry and methodExit calls. In
memory profiling, for example, the bytecodes may be
inserted after each new or after each constructor. In some
aspects, insertion of instrumentation bytecode can be per-
formed either by a post-compiler or a custom class loader.
An alternative to bytecode instrumentation includes moni-
toring events generated by the JVMPI or JVMTI interfaces.
Both APIs can generate events for method entry/exit, object
allocation, and/or other events. In some aspects, JVMTI can
be utilized for dynamic bytecode instrumentation where
insertion of instrumentation bytecodes is performed at run-
time. The profiler may insert the necessary instrumentation
when a selected class is invoked in an application. This can
be accomplished using the JVMTI’s redefineClasses
method, for example. This approach also enables changing
of the level of profiling as the application is running. If
needed, these changes can be made adaptively without
restarting the application. Other platforms, tools, and/or
techniques may provide equivalent or similar functionalities
as the above described ones.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through JVMTI’s programming interface
that enables creation of software agents that can monitor and
control a Java application. An agent may use the function-
ality of the interface to register for notification of events as
they occur in the application, and to query and control the
application. A JVMTI agent may use JVMTI functions to
extract information from a Java application. A JVMTI agent
can be utilized to obtain an application’s runtime informa-
tion such as method calls, memory allocation, CPU utiliza-
tion, lock contention, and/or other information. JVMTI may
include functions to obtain information about variables,
fields, methods, classes, and/or other information. JVMTI
may also provide notification for numerous events such as
method entry and exit, exception, field access and modifi-
cation, thread start and end, and/or other events. Examples
of JVMTI built-in methods include GetMethodName to
obtain the name of an invoked method, GetThreadInfo to
obtain information for a specific thread, GetClassSignature
to obtain information about the class of an object, GetStack-
Trace to obtain information about the stack including infor-
mation about stack frames, and/or other methods. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through java.lang.Runtime class that pro-
vides an interface for application tracing or profiling.
Examples of methods provided in java.lang.Runtime that
can be used to obtain an application’s instructions, data,
and/or other information include tracemethodcalls, tracein-
structions, and/or other methods. These methods prompt the
Java Virtual Machine to output trace information for a
method or instruction in the virtual machine as it is executed.
The destination of trace output may be system dependent
and include a file, a listener, and/or other destinations where
instruction Acquisition Unit 111, Artificial Intelligence Unit
130, and/or other disclosed elements can access needed

US 9,443,192 Bl

77

information. Other platforms, tools, and/or techniques may
provide equivalent or similar functionalities as the above
described ones.

In addition to tracing or profiling tools native to their
respective computing systems and/or platforms, many inde-
pendent tools exist that provide tracing or profiling func-
tionalities on more than one computing system and/or plat-
form. Examples of these tools include Pin, DynamoRIO,
Kernlnst, Dynlnst, Kprobes, OpenPAT, DTrace, SystemTap,
and/or others.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through logging tools of the platform and/or
operating system on which an application runs. Logging
tools may include nearly full feature sets of the tracing or
profiling tools previously described. In one example, Visual
Basic enables logging of runtime messages through its
Microsoft.VisualBasic.Logging namespace that provides a
log listener where the log listener may direct logging output
to a file and/or other target. In another example, Java enables
logging through its java.util.logging class. In some aspects,
obtaining an application’s instructions, data, and/or other
information can be implemented through logging capabili-
ties of the operating system on which an application runs.
For example, Windows NT features centralized log service
that applications and operating-system components can uti-
lize to report their events including any messages. Windows
NT provides functionalities for system, application, security,
and/or other logging. An application log may include events
logged by applications. Windows NT, for example, may
include support for defining an event source (i.e. application
that created the event, etc.). Windows Vista, for example,
supports a structured XML log-format and designated log
types to allow applications to more precisely log events and
to help interpret the events. Examples of different types of
event logs include administrative, operational, analytic,
debug, and/or other log types including any of their subcat-
egories. Examples of event attributes that can be utilized
include eventID, level, task, opcode, keywords, and/or other
event attributes. Windows wevtutil tool enables access to
events, their structures, registered event publishers, and/or
their configuration even before the events are fired. Wevtutil
supports capabilities such as retrieval of the names of all
logs on a computing device; retrieval of configuration infor-
mation for a specific log; retrieval of event publishers on a
computing device; reading events from an event log, from a
log file, or using a structured query; exporting events from
an event log, from a log file, or using a structured query to
a specific target; and/or other capabilities. Operating system
logs can be utilized solely if they contain sufficient infor-
mation on an application’s instructions, data, and/or other
information. Alternatively, operating system logs can be
utilized in combination with another source of information
(i.e. trace information, call stack, processor registers,
memory, etc.) to reconstruct the application’s instructions,
data, and/or other information needed for Artificial Intelli-
gence Unit 130 and/or other disclosed functionalities. In
addition to logging capabilities native to their respective
platforms and/or operating systems, many independent tools
exist that provide logging on different platforms and/or
operating systems. Examples of these tools include Log4;,
Logback, Smartlnspect, NLog, logdnet, Microsoft Enter-
prise Library, ObjectGuy Framework, and/or others. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In some aspects, attaching to and/or obtaining an appli-
cation’s instructions, data, and/or other information can be

10

30

40

45

78

implemented through tracing or profiling the operating sys-
tem on which an application runs. As in tracing or profiling
an application, one of the techniques that can be utilized
includes adding instrumentation code to the operating sys-
tem’s source code before kernel compilation or recompila-
tion. This type of instrumentation may involve defining or
finding locations in the operating system’s source code
where instrumentation code is inserted. Kernel instrumen-
tation can also be performed without the need for kernel
recompilation or rebooting. In some aspects, instrumenta-
tion code can be added at locations of interest through binary
rewriting of compiled kernel code. In other aspects, kernel
instrumentation can be performed dynamically where instru-
mentation code is added and/or removed where needed at
runtime. Dynamic instrumentation may overwrite kernel
code with a branch and/or trap instruction that redirects
execution to instrumentation code or instrumentation rou-
tine. In yet other aspects, kernel instrumentation can be
performed using just-in-time (JIT) dynamic instrumentation
where execution may be redirected to a copy of kernel’s
code segment that includes instrumentation code. This type
of instrumentation may include a JIT compiler and creation
of a copy of the original code segment having instrumen-
tation code or calls to instrumentation routines embedded
into the original code segment. Instrumentation of the oper-
ating system may enable total system visibility including
visibility into an application’s behavior by enabling genera-
tion of low level trace information. Other platforms, tools,
and/or techniques may provide equivalent or similar func-
tionalities as the above described ones.

In some aspects, attaching to and/or obtaining an appli-
cation’s instructions, data, and/or other information can be
implemented through tracing or profiling the processor on
which an application runs. For example, some Intel proces-
sors provide Intel Processor Trace (i.e. Intel PT, etc.), a
low-level tracing feature that enables recording executed
instructions, and/or other data or information of one or more
applications. Intel PT is facilitated by the Processor Trace
Decoder Library along with its related tools. Intel PT is a
low-overhead execution tracing feature that records infor-
mation about application execution on each hardware thread
using dedicated hardware facilities. The recorded execution/
trace information is collected in data packets that can be
buffered internally before being sent to a memory subsystem
or any element or system in general (i.e. Instruction Acqui-
sition Unit 111, Artificial Intelligence Unit, etc.). Intel PT
also enables navigating the recorded execution/trace infor-
mation via reverse stepping commands. Intel PT can be
included in an operating system’s core files and provided as
a feature of the operating system. Intel PT can trace globally
some or all applications running on an operating system.
Instruction Acquisition Unit 111 or Artificial Intelligence
Unit 130 can read or obtain the recorded execution/trace
information from Intel PT for implementation of UAIE
functionalities. Other platforms, tools, and/or techniques
may provide equivalent or similar functionalities as the
above described ones.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through branch tracing or profiling. Branch
tracing may include an abbreviated instruction trace in
which only the successful branch instructions are traced or
recorded. Branch tracing can be implemented through uti-
lizing dedicated processor commands, for example.
Executed branches may be saved into special branch trace
store area of memory. With the availability and reference to
a compiler listing of the application together with a branch

US 9,443,192 Bl

79

trace information, a full path of executed instructions can be
reconstructed if needed. The full path can also be recon-
structed with a memory dump (containing the program
storage) and a branch trace information. In some aspects,
branch tracing can be utilized for pre-learning or automated
learning of an application’s instructions, data, and/or other
information where a number of application simulations (i.e.
simulations of likely/common operations, etc.) are per-
formed. As such, UAIE may learn the application’s opera-
tion automatically saving the time that would be needed to
learn the application’s operation from a user. Other plat-
forms, tools, and/or techniques may provide equivalent or
similar functionalities as the above described ones.

In a further example, attaching to and/or obtaining an
application’s instructions, data, and/or other information can
be implemented through assembly language. Assembly lan-
guage is a low-level programming language for a computer
or other programmable device in which there is a strong
correlation between the language and the architecture’s
machine instructions. Syntax, addressing modes, operands,
and/or other elements of an assembly language instruction
may translate directly into numeric (i.e. binary, etc.) repre-
sentations of that particular instruction. Because of this
direct relationship with the architecture’s machine instruc-
tions, assembly language can be a powerful tool for tracing
or profiling an application’s execution in processor registers,
memory, and/or other computing device components. For
example, using assembly language, memory locations of a
loaded application can be accessed, instrumented, and/or
otherwise manipulated. In some aspects, assembly language
can be used to rewrite or overwrite original in-memory
instructions of an application with instrumentation instruc-
tions. In other aspects, assembly language can be used to
redirect application’s execution to instrumentation routine/
subroutine or other code segment elsewhere in memory by
inserting a jump or trampoline into the application’s in-
memory code, by redirecting program counter, or by other
techniques. Some operating systems may implement pro-
tection from changes to applications loaded into memory.
Operating system, processor, or other low level commands
such as Linux mprotect command or similar commands in
other operating systems may be used to unprotect the
protected locations in memory before the change. In yet
other aspects, assembly language can be used to obtain an
application’s instructions, data, and/or other information
through accessing and/or reading instruction register, pro-
gram counter, other processor registers, memory locations,
and/or other components of the computing system, In yet
other aspects, high-level programming languages may call
or execute an external assembly language program to facili-
tate obtaining an application’s instructions, data, and/or
other information as previously described. In yet other
aspects, relatively low-level programming languages such as
C may allow embedding assembly language directly in their
source code such as, for example, using asm keyword of C.
Other platforms, tools, and/or techniques may provide
equivalent or similar functionalities as the above described
ones.

In a further example, it may be sufficient to obtain user or
other inputs, variables, parameters, and/or other data in
some procedural, simple object oriented, or other applica-
tions to implement Instruction Acquisition Unit 111, Acqui-
sition and Modification Interface 110, and/or other function-
alities. For example, a simple procedural application
executes a sequence of instructions until the end of the
program. During its execution, the application may receive
user or other input, store the input in a variable, and perform

10

15

20

25

30

35

40

45

50

55

60

65

80

calculations using the variable to reach a result. The value of
the variable can be obtained or traced. In another example,
a more complex procedural application comprises a function
that itself includes a sequence of instructions. The applica-
tion may execute a main sequence of instructions with a
branch to the function. During its execution, the application
may receive user or other input, store the input in a variable,
and pass the variable as a parameter to the function. The
function may perform calculations using the parameter and
return a value that the rest of the application can use to reach
a result. The value of the variable, parameter passed to the
function, and/or return value can be obtained or traced.
Values of user or other inputs, variables, parameters, and/or
other items of interest can be obtained through previously
described instrumentation and/or other techniques. The val-
ues of user or other inputs, variables, parameters, and/or
other items can be used for knowledge structuring and
anticipating of autonomous operation of the application later
described. Other platforms, tools, and/or techniques may
provide equivalent or similar functionalities as the above
described ones.

Referring to FIG. 5, in yet another example, attaching to
and/or obtaining an application’s instructions, data, and/or
other information can be implemented through tracing,
profiling, or sampling of instructions or data in processor
registers, memory, or other computing device components.
Such tracing, profiling, or sampling can be implemented in
software, combination of hardware and software, or purely
hardware system. For example, Instruction Register 212
may be part of Processor 11 (or processor’s control unit, etc.)
and it stores an instruction currently being executed or
decoded. In some processors, Program Counter 211 (also
referred to as instruction pointer, instruction address register,
instruction counter, or part of instruction sequencer) can be
incremented after fetching an instruction, and it holds or
points to the memory address of a next instruction to be
executed. In a processor where the incrementation precedes
the fetch, Program Counter 211 points to the current instruc-
tion being executed. In the instruction cycle, an instruction
may be loaded into Instruction Register 212 after Processor
11 fetches it from location in Memory 12 pointed to by
Program Counter 211. Instruction Register 212 holds the
instruction while it is decoded by Instruction Decoder 213,
prepared, and executed. In some aspects, data (i.e. operands,
etc.) needed for instruction execution can be loaded from
Memory 12 into a register within Register Array 214. In
other aspects, the data can be loaded directly into Arithmetic
Logic Unit 215. As instructions pass through Instruction
Register 212 during application execution, they can be
transmitted to UAIE as shown in FIG. 5. As such, UAIE may
then learn the operation of the software application, store
this knowledge in a knowledgebase, and enable autonomous
operation of the software application with partial, minimal,
or no user input. Examples of the steps in execution of a
machine instruction include decoding the opcode (i.e. por-
tion of a machine instruction that specifies the operation to
be performed), determining where the operands are located
(depending on architecture, operands may be in registers, the
stack, memory, /O ports, etc.), retrieving the operands,
allocating processor resources to execute the instruction
(needed in some types of processors), performing the opera-
tion indicated by the instruction, saving the results of
execution, and/or other execution steps. Examples of the
types of machine instructions that can be utilized include
arithmetic, data handling, logical, program control, as well
as special and/or other instruction types. In addition to the
ones described or shown, examples of other computing

US 9,443,192 Bl

81

device or processor components that can be used during an
instruction cycle include memory address register (MAR)
that can hold the address of a memory block to be read from
or written to; memory data register (MDR) that can hold data
fetched from memory or data waiting to be stored in
memory; data registers that can hold numeric values, char-
acters, small bit arrays, or other data; address registers that
can hold addresses used by instructions that indirectly access
memory; general purpose registers (GPRs) that can store
both data and addresses; conditional registers that can hold
truth values often used to determine whether some instruc-
tion should or should not be executed; floating point regis-
ters (FPRs) that can store floating point numbers; constant
registers that can hold read-only values such as zero, one, or
pi; special purpose registers (SPRs) such as status register,
program counter, or stack pointer that can hold information
on program state; machine-specific registers that can store
data and settings related to a particular processor; Register
Array 214 that may include an array of any number of
processor registers; Arithmetic Logic Unit 215 that may
perform arithmetic and logic operations; control unit that
may direct processor’s operation; and/or other circuits or
components.

One of ordinary skill in art will recognize that FIG. §
depicts one of many implementations of a processor or
computing device components, and that various other com-
ponents can be utilized in addition to or in combination with
the ones shown or described, or some components can be
excluded in alternate implementations. Also, various types
of connections can be implemented among processor regis-
ters and/or other processor or computing device components
including busses, direct connections, operative connections,
and/or other connections. Processor or computing device
components may be connected or interlinked differently in
alternate implementations. Any of the described or other
connections can be implemented among any processor or
computing device components and UAIE. In one example,
the connection between Instruction Register 212 and UAIE
may include any number of connections such as, for
example, a dedicated connection for each bit of instruction
Register 212 (i.e. 32 connections for a 32 bit instruction
Register 212, etc.). In some aspects, dedicated hardware
may be built per the disclosed specification to perform
tracing, profiling, or sampling of processor registers or any
computing device components with marginal or no impact to
computing overhead.

Other additional techniques or elements can be utilized as
needed for obtaining an application’s instructions, data,
and/or other information, or some of the disclosed tech-
niques or elements can be excluded, or a combination
thereof can be utilized in alternate embodiments.

Referring to FIG. 6, Artificial Intelligence Unit 130 com-
prises the functionality for learning one or more Software
Application’s 120 previously (i.e. recently, etc.) executed
instructions (i.e. instruction sets, etc.) or operations, and/or
other functionalities. Artificial Intelligence Unit 130 com-
prises the functionality for anticipating one or more Soft-
ware Application’s 120 future instructions (i.e. instruction
sets, etc.) or operations. Artificial Intelligence Unit 130 also
comprises the functionality for determining one or more
instructions (i.e. instruction sets, etc.), operations, or
sequences thereof, which Software Application 120 may
implement autonomously with partial, minimal, or no user
input. Artificial Intelligence Unit 130 also comprises the
functionality for identifying a particular number of instruc-
tions (i.e. instruction sets, etc.), operations, or sequences
thereof to be presented to User 50 as options to be selected,

10

15

20

25

30

35

40

45

50

55

60

65

82

which the system has determined User 50 may want to
execute. The number of instructions (i.e. instruction sets,
etc.), operations, or sequences thereof to be executed, imple-
mented, or presented may vary based on the determinations
of Artificial Intelligence Unit 130 or it may alternatively be
predetermined.

In some embodiments, Artificial Intelligence Unit 130
includes interconnected Command Disassembler 500,
Operation List 510, Knowledge Structuring Unit 520,
Knowledgebase 530, Decision-making Unit 540, Confirma-
tion Unit 550, and Command Assembler 560. Other addi-
tional elements can be included as needed, or some of the
disclosed ones can be excluded, or a combination thereof
can be utilized in alternate embodiments.

Referring to FIG. 7, Command Disassembler 500 com-
prises the functionality for disassembling Instruction Set 600
(also referred to as instruction, operation, command, and/or
other such reference, etc.) into its instruction Set Portions
620 (also referred to as Inst Set Por 620, etc.) or subsets of
Instruction Set 600, and/or other functionalities.

Instruction Set 600 includes one or more commands,
keywords, symbols (i.e. parentheses, brackets, commas,
semicolons, etc.), instructions, operators (i.e. =, <, >, etc.),
variables, values, objects (i.e. file handle, network connec-
tion, game player, etc.), data structures (i.e. table, database,
user defined data structure, etc.), functions (i.e.
Function1(), FIRST(), MIN(), SQRT(), etc.), parameters,
references thereto, and/or other components for performing
an operation on Computing Device 70. In some aspects,
each component of Instruction Set 600 can be captured in an
Instruction Set Portion 620. In other aspects, Command
Disassembler 500 can be very detailed in its disassembling
of Instruction Set 600 where each character, digit, symbol,
and/or other detailed element may be captured in an Instruc-
tion Set Portion 620. Instruction Set 600 can be implemented
in a high-level programming language such as Java or C++,
a low-level language such as assembly or machine language,
an intermediate language or construct such as bytecode,
and/or any other language or construct.

When an Instruction Set 600 is processed by Command
Disassembler 500, the Instruction Set 600 is divided or split
into one or more Instruction Set Portions 620 that can be
stored in Operation 610. An Instruction Set 600 disas-
sembled into its Instruction Set Portions 620 and/or stored in
Operation 610 becomes more convenient to compare to
other Instruction Sets 600 or Operations 610. Operation 610
comprises the functionality for storing Instruction Set Por-
tions 620 of a particular Instruction Set 600, Extra Info 630
related to or associated with the Instruction Set 600, and/or
other information. Operation 610 may be or include any data
structure (i.e. array, list, linked list, doubly linked list, queue,
matrix, table, file, etc.) comprising one or more data fields
that can store Instruction Set Portions 620, Extra Info 630,
and/or other information. Therefore, an instruction Set 600
corresponds to a particular Operation 610 identified by that
instruction Set 600, and vice versa. Also, the Instruction Set
600 may be referred to as the Operation 610, and vice versa,
as this Operation 610 is a representation and/or logical
equivalent of this particular Instruction Set 600. Therefore,
Instruction Set 600 and Operation 610 may be used inter-
changeably herein.

In some embodiments, Command Disassembler 500 com-
prises the functionality for identifying or recognizing spe-
cific commands, keywords, symbols, instructions, operators,
variables, values, objects, data structures, functions, param-
eters, references thereto, and/or other components of
Instruction Set 600. In some aspects, the commands, key-

US 9,443,192 Bl

83

words, symbols, instructions, operators, variables, values,
objects, data structures, functions, parameters, references
thereto, and/or other components may be provided in a
lexicon containing all possible or most used commands,
keywords, symbols, instructions, operators, variables, val-
ues, objects, data structures, functions, parameters, refer-
ences thereto, and/or other components specific to the pro-
gramming language used, and/or specific to Software
Application 120. The lexicon can be stored or organized in
any data structure (i.e. a list, array, table, database, etc.),
object, and/or other repository. In some embodiments, the
lexicon may be predefined and change as the components
used within Software Application 120 change. For example,
in response to changing the name of a variable within
Software Application’s 120 source code, the variable’s name
may be updated in the lexicon, so Command Disassembler
500 would recognize the updated variable name as an
Instruction Set Portion 620 in its next run. In other embodi-
ments, the lexicon can be created on-fly by obtaining com-
mands, keywords, symbols, instructions, operators, vari-
ables, values, objects, data structures, functions, parameters,
references thereto, and/or other components used in Soft-
ware Application 120 when needed. For example, compo-
nents (i.e. table names, report names, column names, rela-
tions, etc.) of a database application or DBMS may be
obtained from data dictionary or other metadata repository
of the database. The on-fly created lexicon may also include
commands, keywords, symbols, instructions, operators,
variables, values, objects, data structures, functions, param-
eters, references thereto, and/or other components used in
Software Application’s 120 programming language. For
example, components (i.e. commands, operators, built-in
functions, etc.) of a programming language can be obtained
from the programming language’s reference index, instruc-
tion set listing, and/or other listing that may be available
from the programming language manufacturer, from a pub-
lic web site, and/or from other source.

In an embodiment shown in FIG. 7, Instruction Set 600
includes the following function call construct:

Functionl (Parameterl, Parameter2, Parameter3, Param-
eter4, ParameterS5, . . .);
An example of a function call applying the above construct
includes the following Instruction Set 600:

clickButton (rightPane, 412, 377);
The function or reference thereto “clickButton” is Instruc-
tion Set Portion 620 of Instruction Set 600 and therefore it
may be extracted and stored in a data field of Operation 610.
The next Instruction Set Portion 620 that may be extracted
and stored includes the symbol “(” representing the start of
the function’s parameters. The next instruction Set Portion
620 that may be extracted and stored includes the parameter
“rightPane” indicating the pane in which the button to be
clicked on is located. The next Instruction Set Portion 620
that may be extracted and stored includes the symbol “,”
representing parameter divider. The next instruction Set
Portion 620 that may be extracted and stored includes the
parameter “412” indicating the X coordinate of the button to
be clicked. The next instruction Set Portion 620 that may be
extracted and stored includes the symbol “” representing
parameter divider. The next Instruction Set Portion 620 that
may be extracted and stored includes the parameter “377”
indicating the Y coordinate of the button to be clicked. The
next Instruction Set Portion 620 that may be extracted and
stored includes the symbol “)” representing the end of the
function’s parameters. Other Instruction Set Portions 620
not shown in this particular example can be utilized in
alternate embodiments. Various types of Instruction Sets 600

20

25

30

40

45

55

84

may include different Instruction Set Portions 620 stored in
Operation 610. For example, a function may include func-
tion name, parameters, and/or other components, whereas, a
FOR loop may include keyword “FOR” and its associated
counting variable (i.e. i, etc.), operators (i.e. <, <= > >=,
etc.), counter (i.e. i++, i——, 1+3, i-107, etc.), and/or other
components.

In another embodiment shown in FIG. 8, Instruction Set
600 includes structured query language (SQL). In a further
embodiment shown in FIG. 9, Instruction Set 600 includes
bytecode (i.e. Java bytecode, Python bytecode, CLR byte-
code, etc.). In a further embodiment shown in FIG. 10,
Instruction Set 600 includes assembly code. In a further
embodiment shown in FIG. 11, Instruction Set 600 includes
machine code. In each of the above-described or other
embodiments, Command Disassembler 500 may extract or
disassemble instruction Set Portions 620 from the Instruc-
tion Set 600. Command Disassembler 500 may identify or
recognize specific commands, keywords, symbols, instruc-
tions, operators, variables, values, objects, data structures,
functions, parameters, references thereto, and/or other com-
ponents of SQL, bytecode, assembly code, machine code,
any programming language, or other code or language
included in the Instruction Set 600 as previously described.

In addition to Instruction Set’s 600 Instruction Set Por-
tions 620, extra information or Extra Info 630 can be stored
in Operation 610. Acquisition and Modification Interface
110 or any of its elements, Command Disassembler 500,
and/or any other element can obtain or receive Extra info
630, which can then be stored in Operation 610. Examples
of Extra Info 630 that can be stored in Operation 610 include
time stamp or other time information, user specific infor-
mation, group user information, version of Software Appli-
cation 120, the type of Software Application 120 (i.e. web
browser, computer game, word processing, database, CAD/
CAM software, etc.), the type of computing device execut-
ing Software Application 120, the type of user (novice,
moderate, skilled, expert), and/or other information. Any
extra, contextual, and/or other information may be stored in
Extra Info 630. Extra Info 630 can be utilized to provide
additional or as much information as possible for best
anticipation of future operations of Software Application
120. In one example, time stamp or any time information
stored in Extra Info 630 may be useful for anticipation of
future operations related to a specific time period. In another
example in which Software Application 120 is a computer
game application, Extra info 630 includes the type of
Software Application 120 being a computer game, the type
of computing device being based on an AMD x86 micro-
processor, the type of graphics chip being NVIDIA GeForce
GTX 660, the type of player being novice, and/or other
information. In a further example, Extra Info 630 includes
geo-spatial information about the player’s character/avatar
and/or objects around the player’s character/avatar. Extra
Info 630 may include player’s avatar’s coordinates within
the game and player’s avatar’s direction of movement. Extra
Info 630 may further include the types (i.e. enemy player,
friend player, rock, forest, pond, building, etc.) and/or coor-
dinates of objects and/or other players and their directions of
movement. Such Extra Info 630 can provide geo-spatial and
situational awareness and/or capabilities to the disclosed
devices, apparatuses, systems, and/or methods.

In some embodiments, observed information can be
stored in Extra Info 630. In one example, an object’s
location (i.e. player’s avatar’s coordinates, etc.) in a com-
puter game application can be stored in Extra Info 630. In
another example, formatting of words written prior to the

US 9,443,192 Bl

85

currently written word in a word processing application can
be stored in Extra Info 630. In other embodiments, com-
puted information can be stored in Extra Info 630. UAIE
may include computational functionalities to create Extra
info 630 by performing calculations using observed and/or
other information. In one example, an object’s distance,
bearing (i.e. angle or direction of movement, etc.), speed,
and/or other information may be calculated or estimated
from the object’s coordinates in a computer game applica-
tion by utilizing Pythagorean theorem, Euclidean distance
formula, trigonometry, and/or other theorems, formulas, or
disciplines.

In some aspects, different Extra Info 630 may be stored
for different types of Software Application 120. In one
example, types and coordinates of objects surrounding
user’s avatar in a first shooter, flight simulation, or other
similar computer game or context reliant application may be
stored in Extra Info 630. In another example, locations and
arrangements of top-line elements in a tetris-like or other
similar computer game or context reliant application may be
stored in Extra Info 630. In a further example, formatting of
characters or words around a pasted section of text in a word
processing application may be stored in Extra Info 630.
Which information is stored in Extra Info 630 can be set by
User 50 or UAIE administrator, determined by UAIE auto-
matically, or acquired from an outside source or repository.
In one example, UAIE enables User 50 to set which infor-
mation is stored in Extra Info 630. In another example,
UAIE may determine which information is stored in Extra
Info 630 by analyzing the type of application or types of
instructions performed, by analyzing the construct of the
application (i.e. 2D or 3D construct, multiple players or
users construct, etc.), and/or by performing other context
analysis. In a further example, a database or other repository
identifying which information is of interest to be stored in
Extra Info 630 for specific types or specific applications can
be utilized.

In some embodiments, extra information or Extra Info
630 may include or be referred to as contextual information,
and contextual information may include or be referred to as
extra information or Extra Info 630. Therefore, these terms
may be used interchangeably herein.

In some aspects, Command Disassembler 500 can struc-
ture or store Instruction Set Portions 620, Extra Info 630,
and/or other information into any data structure or object
(i.e. other than Operation 610) such as, for example, array,
list, linked list, doubly linked list, queue, sequence, tree,
heap, graph, map, grid, matrix, multi-dimensional matrix,
table, database, hierarchical data structure, file, neural net-
work, and/or any other type or form of a data structure or
object.

Referring to FIG. 12, Operation/Instruction Set List 510
(also referred to as Operation List 510 or Instruction Set List
510, etc.) comprises the functionality for storing one or more
Operations 610 and/or their corresponding Instruction Sets
600, and/or other functionalities. Operation List 510 may
include any data structure (i.e. array, list, linked list, matrix,
table, etc.) that can store one or more Operations 610 and/or
their corresponding Instruction Sets 600.

In some embodiments, Operation List 510 receives
Operations 610 or Instruction Sets 600 from Command
Disassembler 500 and stores a number of Operations 610 or
Instruction Sets 600 that were most recently (also referred to
simply as recently, etc.) used or executed in Software
Application 120. The number of Operations 610 or Instruc-
tion Sets 600 most recently used or executed may vary
depending on the embodiments. In one example, anywhere

20

30

40

45

86

between 1 and 10000 most recently used or executed Opera-
tions 610 or Instruction Sets 600 can be stored. In another
example, the number of stored Operations 610 or Instruction
Sets 600 may be between 2 and 10, such as for example 2,
5, 6, or 9. In yet another example, the number of Operations
610 or Instruction Sets 600 may be between 10 and 50, such
as for example 12, 15, 20, 30, 40 or 50. In yet another
example, the number of Operations 610 or Instruction Sets
600 stored may be between 50 and 200, such as for example
50, 70, 80, 100, 130, 180 or 200. In yet another example, the
number of Operations 610 or Instruction Sets 600 stored
may be between 200 and 10000, such as for example 500,
1000, 3000, 5000, 8000 or 10000. The number of most
recently used or executed Operations 610 or Instruction Sets
600 stored can be even greater than 10000, as one of
ordinary skill in art would recognize that the number of
stored Operations 610 or Instruction Sets 600 may be any
number that can be stored in any memory or storage
described herein.

In some embodiments in which five recently used or
executed Operations 610 or Instruction Sets 600 are stored
in Operation List 510, Operations 610 or Instruction Sets
600 may be identified such that the current Operation 610 or
Instruction Set 600 is identified as Operation n, the most
recent Operation 610 or Instruction Set 600 prior to the
current is identified as Operation n-1, and so on until the
least recent Operation 610 or Instruction Set 600 being
stored is labeled as Operation n—4. Each time Operation List
510 receives another new Operation 610 or Instruction Set
600 from Command Disassembler 500, it may erase the least
recent Operation 610 or Instruction Set 600, such as Opera-
tion n—-4, and insert current Operation 610 or Instruction Set
600 received as Operation n. Naturally, all the most recently
used or executed Operations 610 or Instruction Sets 600 that
are stored in this list or queue may be shifted by one count
further towards Operation n-4. This way, the system can
maintain a queue of most recently used or executed Opera-
tions 610 or Instruction Sets 600. In some aspects, such
Operation List 510 or queue may be associated with or
related to a particular time point. For example, Operation
List 510 associated with the present time point may be
referred to as a current Operation List 510 or as another
suitable name or reference. In another example, when ref-
erenced from a time point (i.e. past or future time point, etc.)
other than the present time point, Operation List 510 may be
referred to as a “then current” Operation List 510, or simply
as a “current” Operation List 510 where the time point with
which Operation List 510 is associated is implied from
context. In a further example, a past Operation List 510 (i.e.
Operation List 510 stored in a Knowledge Cell 800, Opera-
tion List 510 stored in Knowledgebase 530, Operation List
510 stored in Neural Network 850, any past Operation List
510, etc.) may be referred to as a previous Operation List
510 or as previously used or executed Operations 610 or
Instruction Sets 600. Any other suitable name or reference
can be utilized for Operation List 510 associated with or
related to various time points. Although, Operation List 510
may often refer to recently or most recently used or executed
Operations 610 or Instruction Sets 600, Operation List 510
may generally refer to any collection of Operations 610 or
Instruction Sets 600 used or executed at any time point
depending on context.

In some aspects, the processor, a virtual machine, and/or
other processing element of Computing Device 70 may
include a repository of stored executed or simulated (i.e.
simulated execution, etc.) application’s instructions (i.e.
Operations 610 or Instruction Sets 600, etc.), data, and/or

US 9,443,192 Bl

87

other information. In such instances, Operation List 510 may
be or include the entire or a subset of such repository. Any
subset of such repository can be utilized in/as Operation List
510, not only a recent or the most recent subset. In one
example, the entire or a subset of instructions (i.e. Opera-
tions 610 or Instruction Sets 600, etc.), data, and/or other
information in such repository can be transferred to Opera-
tion List 510. In another example, the entire or a subset of
such repository itself can serve as Operation List 510 in
which case Operation List 510 as a separate element can be
omitted. In such instances, the later described knowledge
structuring, storing, and/or other operations involving
Operation List 510 can utilize the entire or a subset of a
repository comprising executed or simulated (i.e. simulated
execution, etc.) application’s instructions (i.e. Operations
610 or Instruction Sets 600, etc.), data, and/or other infor-
mation.

In certain aspects, Operation List 510 comprises one or
more recently used or executed Operations 610 or Instruc-
tion Sets 600 that User 50 issued or caused to be executed.
In other aspects, Operation List 510 comprises one or more
recently used or executed Operations 610 or Instruction Sets
600 that UAIE anticipated and/or caused to be executed as
later described. As such, UAIE anticipated/generated Opera-
tions 610 or Instruction Sets 600 can be inputted into UAIE
as any other User 50 initiated Operation 610 or Instruction
Set 600, thereby enabling UAIE to learn its own previously
anticipated/generated Operations 610 or Instruction Sets 600
in addition to User 50 initiated Operations 610 or instruction
Sets 600. In yet some aspects, UAIE can be configured or
reach such level of autonomy to be able to anticipate all
Software Application’s 120 Operations 610 or Instruction
Sets 600 autonomously with no input from User 50 in which
case Operation List 510 would include only recently used or
executed Operations 610 or Instruction Sets 600 that were
anticipated/generated by UAIE. As such, UAIE may learn its
own previously anticipated/generated Operations 610 or
Instruction Sets 600.

Referring to FIG. 13, Knowledge Structuring Unit 520
comprises the functionality for structuring knowledge of
Software Application’s 120 operations, and/or other func-
tionalities. Knowledge Structuring Unit 520 comprises the
functionality for structuring knowledge of used or executed
Operations 610 or Instruction Sets 600. Knowledge Struc-
turing Unit 520 comprises the functionality for structuring
the stored sequence (i.e. Operation List 510) of used or
executed Operations 610 or Instruction Sets 600 into usable
knowledge for future anticipating of Operations 610 or
Instruction Sets 600. Knowledge Structuring Unit 520 com-
prises the functionality to produce any variations of Opera-
tions 610 or Instruction Sets 600 that may ever be used in
Software Application 120.

In some embodiments, Knowledge Structuring Unit 520
receives current Operation List 510 and creates Knowledge
Cell 800 by copying Operations 610 or Instruction Sets 600
from Operation List 510 into the Knowledge Cell 800. For
example, Knowledge Structuring Unit 520 may copy Opera-
tion n from Operation List 510 into Operation n+2 of
Knowledge Cell 800, by copying Operation n-1 from
Operation List 510 into Operation n+1 of Knowledge Cell
800, by copying Operation n-2 from Operation List 510 into
Operation n of Knowledge Cell 800, and so forth. Knowl-
edge Cell 800 comprises the functionality for storing Soft-
ware Application’s 120 instructions (i.e. Instruction Sets 600
or Operations 610, etc.), and/or other functionalities. Knowl-
edge Cell 800 comprises the functionality for storing Soft-
ware Application’s 120 used or executed Operations 610 or

10

15

20

25

30

35

40

45

50

55

60

65

88

Instruction Sets 600. Knowledge Cell 800 comprises the
functionality for storing a sequence of Software Applica-
tion’s 120 used or executed Operations 610 or Instruction
Sets 600. Knowledge Cell 800 may include any data struc-
ture (i.e. array, list, linked list, matrix, table, etc.) that can
store Software Application’s 120 Operations 610 or Instruc-
tion Sets 600. In some aspects, Operation n, Operation n-1,
and Operation n-2 in a Knowledge Cell 800 can later be
used for comparison with the then Software Application’s
120 recent (i.e. including current, etc.) operations, and
Operation n+1 and Operation n+2 can later be used for
anticipation of Software Application’s 120 future or subse-
quent operations, for example. Therefore, Operations 610 or
Instruction Sets 600 with an order number greater than n
may be anticipatory and the rest of the Operations 610 or
Instruction Sets 600 may be comparative, although this
particular split can differ in alternate embodiments. Any
number of comparative and any number of anticipatory
Operations 610 or Instruction Sets 600 can be included in a
Knowledge Cell 800, and any number of Knowledge Cells
800 can be used in UAIE. In some designs, a long Knowl-
edge Cell 800 can be used in which case comparisons of
Operations 610 or Instruction Sets 600 may be performed in
atraversing pattern as explained below. Also, as indicated by
the up and down vertical dotted arrows, the copying of
Operation n from Operation List 510 into Knowledge Cell
800 can start at any Operation n+m through Operation n-m
of the Knowledge Cell 800. This way, the number of
comparative and anticipatory Operations 610 or Instruction
Sets 600 may differ and it can be determined by a user, by
UAIE administrator, or automatically by the system. In one
example, Knowledge Cell 800 includes only one anticipa-
tory Operation 610 or Instruction Set 600 in the case where
copying of the Operation List 510 into Knowledge Cell 800
starts with copying Operation n of the Operation List 510
into Operation n+1 of the Knowledge Cell 800. In another
example, Knowledge Cell 800 includes four anticipatory
Operations 610 or Instruction Sets 600 in the case where the
copying of the Operation List 510 into the Knowledge Cell
800 starts with copying Operation n of the Operation List
510 into Operation n+4 of the Knowledge Cell 800. It should
be noted that n, m, and/or other such letters or indicia may
be different numbers in different elements even where the
elements are depicted in the same figure. In general, n, m,
and/or other such letters or indicia may follow the immedi-
ate sequence and/or context where they are indicated. There-
fore, an Operation 610 from Operation List 510 having a
same letter or indicia as Operation 610 from Knowledge
Cell 800 may be a different Operation 610. In one example,
Operation n from Operation List 510 may be different than
Operation n from Knowledge Cell 800. In another example,
Operation n-2 from Operation List 510 may be different
than Operation n-2 from Knowledge Cell 800.

In some aspects, since an Operation List 510 may be
associated with or related to a particular time point as
previously described, a Knowledge Cell 800 created using
such Operation List 510 may also be associated with or
related to that time point. Therefore, a Knowledge Cell 800
may include recently used or executed Operations 610 or
Instruction Sets 600 associated with or related to a particular
time point. For example, one Knowledge Cell 800 can store
recently used or executed Operations 610 or Instruction Sets
600 at time tl, another Knowledge Cell 800 can store
recently used or executed Operations 610 or Instruction Sets
600 at time t2, a further Knowledge Cell 800 can store
recently used or executed Operations 610 or Instruction Sets
600 at time t3, and so on. The time points may be consecu-

US 9,443,192 Bl

89

tive, but such consecutive order is not required and any other
order can be utilized in alternate embodiments. Further, a
time point with which a Knowledge Cell 800 is associated
or related can be stored in the Knowledge Cell 800 and
utilized later if needed.

In certain aspects, Knowledge Structuring Unit 520 can
utilize any subset of Operations 610 or Instruction Sets 600
from Operation List 510 in the knowledge structuring pro-
cess (i.e. Knowledge Cell 800 creation, etc.), not only the
most recent Operations 610 or Instruction Sets 600 from
Operation List 510 or the entire Operation List 510. In one
example, Knowledge Structuring Unit 520 can utilize a
subset of Operations 610 or Instruction Sets 600 close to or
in the middle of Operation List 510. In another example,
Knowledge Structuring Unit 520 can utilize a subset of
Operations 610 or instruction Sets 600 close to or at the end
of Operation List 510. Knowledge Structuring Unit 520 can
utilize a subset of Operations 610 or Instruction Sets 600
anywhere in Operation List 510.

In some embodiments, Knowledge Structuring Unit 520
can structure or store Operations 610 or Instruction Sets 600
into any data structure or object (i.e. other than Knowledge
Cell 800) such as, for example, array, list, linked list, doubly
linked list, queue, sequence, tree, heap, graph, map, grid,
matrix, multi-dimensional matrix, table, database, neural
network, hierarchical data structure, file, and/or any other
type or form of a data structure or object.

Referring to FIG. 14, Knowledgebase 530 comprises the
functionality for storing Operations 610 or Instruction Sets
600, and/or other functionalities. Knowledgebase 530 com-
prises the functionality for storing Operations 610 or
Instruction Sets 600 structured into one or more Knowledge
Cells 800. Knowledgebase 530 comprises the functionality
for storing Knowledge Cells 800, and/or Operations 610 or
Instruction Sets 600 in a particular order to enable easier
access and usage of stored data. Knowledgebase 530 com-
prises the functionality for managing, modifying, and/or
providing Knowledge Cells 800, and/or Operations 610 or
Instruction Sets 600 as necessary. Knowledgebase 530 com-
prises the functionality to store and manage all the Knowl-
edge Cells 800, and/or Operations 610 or Instruction Sets
600 that were used or executed by any users in the past.
Knowledgebase 530 can store any variations of Knowledge
Cells 800, and/or Operations 610 or Instruction Sets 600 that
may ever be used by a user.

In an embodiment shown in FIG. 14, Knowledgebase 530
includes one or more Knowledge Cells 800, each of which
comprises one or more Operations 610 or Instruction Sets
600. In some aspects, Knowledgebase 530 includes a table,
although, one or more tables, databases, files, or other data
structures can be used. For example, in the case of a single
table being used as Knowledgebase 530, a Knowledge Cell
800 can be stored within the table where each Operation 610
or Instruction Set 600 of the Knowledge Cell 800 is a record
with a common Knowledge Cell Identifier (ID) 900 that
signifies its association with its parent Knowledge Cell 800.
Each record within the table may include data fields storing
instruction Set Portions 620 and Extra Info 630 of the
corresponding Operation 610 or Instruction Set 600. Later in
the process, a call to the table to read all records with a
specific Knowledge Cell ID 900 may reconstruct the Knowl-
edge Cell 800. In other embodiments, Knowledgebase 530
includes an entire database management system (DBMS)
dedicated to Knowledgebase 530 functionalities. In further
embodiments, Knowledgebase 530 includes a neural net-
work (later described). Knowledgebase 530 may include any
data structure or repository to implement its functionalities.

10

20

25

30

35

40

45

50

55

60

65

90

In some designs, Operations 610 or Instruction Sets 600
can be stored directly within Knowledgebase 530 without
using Knowledge Cell 800 as the intermediary data struc-
ture. As such, Operations 610 or Instruction Sets 600 can be
stored in one or more sequences (i.e. lists, arrays, tables,
etc.) within Knowledgebase 530. Substantial Similarity
Comparisons 1010 (later described) can be performed by
traversing the one or more sequences of Operations 610 or
Instruction Sets 600 to find a match. In one example,
Knowledgebase 530 includes all used or executed Opera-
tions 610 or Instruction Sets 600 in a single long sequence
(i.e. list, array, table, etc.). In another example, Knowledge-
base 530 includes used or executed Operations 610 or
Instruction Sets 600 in a plurality of long sequences such as
daily, weekly, monthly, yearly, or other periodic (i.e.
monthly tables, monthly lists, monthly arrays, etc.) or other
sequences. In the case of any long sequence, Substantial
Similarity Comparisons 1010 may compare Operations 610
or Instruction Sets 600 of a current Operation List 510 with
subsequences of a long sequence in Knowledgebase 530 in
incremental or other traversing pattern. The incremental
traversing pattern may start from one of the ends of the
single long sequence in Knowledgebase 530 and move the
comparison subsequence up or down the list one incremental
Operation 610 or Instruction Set 600 at a time. Other
traversing patterns or methods can be employed such as
starting from the middle of the sequence and subdividing the
resulting sub-sequences in a recursive pattern, or any other
traversing pattern or method. Parallel processors such as a
plurality of Processors 11 can be utilized for processing
subsequences simultaneously.

In some aspects, Substantial Similarity Comparison 1010
(later described) can be utilized to compare a newly struc-
tured Knowledge Cell 800 (i.e. produced by Knowledge
Structuring Unit 520, etc.) with Knowledge Cells 800 in the
Knowledgebase 530 to find a substantially similar Knowl-
edge Cell 800. If a substantially similar Knowledge Cell 800
is found, storing the newly structured Knowledge Cell 800
in Knowledgebase 530 can optionally be omitted. For
example, if a Knowledge Cell 800 in Knowledgebase 530 is
found to be nearly identical or substantially similar (i.e. with
a high degree of similarity, etc.) to a compared newly
structured Knowledge Cell 800, storing the newly structured
Knowledge Cell 800 in Knowledgebase 530 may not add
much or any additional knowledge to the Knowledgebase
530. Therefore, storing it can be omitted to save storage
resources and limit the number of Knowledge Cells 800 that
may later need to be processed or compared. Any of the
features, functionalities, and embodiments of Substantial
Similarity Comparison 1010, Importance Index 640 (later
described), Comparison Accuracy Index 650 (later
described), and/or other disclosed elements can be utilized
to facilitate determination whether to store a newly struc-
tured Knowledge Cell 800 into Knowledgebase 530.

In some embodiments, Operations 610 or Instruction Sets
600, and/or their portions can be compiled, interpreted, or
otherwise translated into machine code, bytecode, or other
code to be readily available for execution when needed. The
machine code, bytecode, or other code may be associated
with the original Operations 610 or Instruction Sets 600,
and/or their portions and stored in Knowledgebase 530. In
one example, Operations’ 610 or Instruction Sets’ 600,
and/or their portions’ machine code can be readily execut-
able by a processor when needed. In another example,
Operations’ 610 or Instruction Sets’ 600, and/or their por-
tions’ bytecode can be readily executable by a virtual
machine when needed. In some aspects, compiler, just-in-

US 9,443,192 Bl

91

time (JIT) compiler, interpreter, or other translator can be
implemented to perform the compilation, interpretation, or
other translation. In one example, Operations’ 610 or
Instruction Sets’ 600, and/or their portions” compiled, inter-
preted, or otherwise translated code can be utilized in
Substantial Similarity Comparisons 1010 (later described).
Referring to FIG. 15, Decision-making Unit 540 com-
prises the functionality for anticipating Software Applica-
tion’s 120 future operations (i.e. Operations 610 or Instruc-
tion Sets 600), and/or other functionalities. Decision-making
Unit 540 comprises functions, rules, and/or logic to deter-
mine which Operation 610 or Instruction Set 600 is most
suitable or likely to be used or executed next. Similarly,
Decision-making Unit 540 comprises the functionality to
determine which Operation 610 or Instruction Set 600 is
second most suitable or likely to be used or executed, which
Operation 610 or Instruction Set 600 is third most suitable
or likely to be used or executed, and so on. Furthermore,
Decision-making Unit 540 comprises the functionality to
determine a sequence or order in which Operations 610 or
Instruction Sets 600 are most likely to be used or executed.
In some embodiments, Decision-making Unit 540 may
anticipate Software Application’s 120 future operations (i.e.
future Operations 610 or Instruction Sets 600) by perform-
ing Substantial Similarity Comparisons 1010 between cur-
rent Operation List 510 and Knowledge Cells 800 stored in
Knowledgebase 530. Substantial Similarity Comparisons
1010 can be performed one Knowledge Cell 800 at a time,
by traversing one long knowledge cell as previously
described, by traversing one or more trees of knowledge
cells, by traversing one or more hierarchies of knowledge
cells, or by utilizing other methods or data structures
depending on design and/or data structures used.
Substantial Similarity Comparison 1010 comprises the
functionality for comparing or matching Operations 610 or
Instruction Sets 600, and/or other functionalities. Substantial
Similarity Comparison 1010 comprises the functionality for
comparing or matching Operations 610 or Instruction Sets
600 from Operation List 510 with Operations 610 or instruc-
tion Sets 600 stored in Knowledgebase 530, Neural Network
850 (later described), or other repository. Substantial Simi-
larity Comparison 1010 comprises the functionality for
comparing or matching Operations 610 or Instruction Sets
600 from Operation List 510 with Operations 610 or Instruc-
tion Sets 600 from Knowledge Cells 800. In some aspects,
comparing or matching may include comparing Operations
610 or instruction Sets 600 from Operation List 510 with
corresponding comparative Operations 610 or Instruction
Sets 600 from Knowledge Cells 800. Substantial Similarity
Comparison 1010 may include functions, rules, and/or logic
for performing matching or comparisons and for determin-
ing that while a perfect match is not found, a substantially
similar match has been found. As such, Substantial Simi-
larity Comparison 1010 comprises the functionality for
determining substantial similarity or substantial similarity
match (also referred to as match in some contexts, etc.)
between individually compared Operations 610 or Instruc-
tion Sets 600. Substantial Similarity Comparison 1010 also
comprises the functionality for determining substantial simi-
larity or substantial similarity match (also referred to as
match in some contexts, etc.) between collections of Opera-
tions 610 or Instruction Sets 600. In some aspects, Substan-
tial Similarity Comparison 1010 may determine substantial
similarity or substantial similarity match between an Opera-
tion List 510 and a Knowledge Cell 800 based on substantial

10

15

20

25

30

35

40

45

50

55

60

65

92

similarity between one or more Operations 610 or Instruc-
tion Sets 600 from the Operation List 510 and the Knowl-
edge Cell 800.

In some embodiments such as the one illustrated in FIG.
15, Substantial Similarity Comparison 1010 includes com-
paring a number of most recently used or executed Opera-
tions 610 or instruction Sets 600 (i.e. Operation n, Operation
n-1, Operation n-2, etc.) from Operation List 510 with
corresponding comparative Operations 610 or Instruction
Sets 600 from Knowledge Cells 800 in Knowledgebase 530.
If a substantially similar pattern of most recently used or
executed Operations 610 or Instruction Sets 600 (i.e. Opera-
tion n, Operation n-1, Operation n-2, etc.) from Operation
List 510 is found in comparative Operations 610 or Instruc-
tion Sets 600 from a Knowledge Cell 800, subsequent
Operations 610 or Instruction Sets 600 can be anticipated in
the anticipatory Operations 610 or Instruction Sets 600 (i.e.
Operation n+1, Operation n+2, etc.) from the Knowledge
Cell 800. Any number of Operations 610 or instruction Sets
600 can be compared in alternate embodiments of Substan-
tial Similarity Comparisons 1010.

Substantial Similarity Comparison 1010 may include a
Comparison Strictness Function 1011. Although FIG. 15
illustrates each Substantial Similarity Comparison 1010
including its own Comparison Strictness Function 1011,
Comparison Strictness Function 1011 may be a single func-
tion, in connection with Decision-making Unit 540, servic-
ing multitude Substantial Similarity Comparisons 1010.
Comparison Strictness Function 1011 comprises the func-
tionality for determining or defining strictness criteria or
rules for finding a substantial similarity match between
Operations 610 or Instruction Sets 600, and/or other func-
tionalities. Comparison Strictness Function 1011 comprises
the functionality for determining or defining strictness cri-
teria or rules for finding a substantial similarity match
between Operations 610 or Instruction Sets 600 in Operation
List 510 and Operations 610 or Instruction Sets 600 in
Knowledgebase 530, Neural Network 850 (later described),
or other repository. Comparison Strictness Function 1011
comprises the functionality for determining or defining
strictness criteria or rules for finding a substantial similarity
match between Operations 610 or Instruction Sets 600 in
Operation List 510 and Operations 610 or Instruction Sets
600 in Knowledge Cells 800. Comparison Strictness Func-
tion 1011 may therefore define appropriately strict rules for
finding or determining substantial similarity between the
compared Operations 610 or Instruction Sets 600. In some
aspects, if the rules are too strict, Substantial Similarity
Comparisons 1010 may not find a matching Knowledge Cell
800. On the other hand, if the rules are too lenient Substan-
tial Similarity Comparisons 1010 may find too many match-
ing Knowledge Cells 800 and anticipate inaccurate Software
Application’s 120 future operations (i.e. future Operations
610 or Instruction Sets 600). Comparison Strictness Func-
tion 1011 may therefore include the functionality for setting
and resetting the strictness of rules for finding or determin-
ing substantial similarity between the compared Operations
610 or Instruction Sets 600, thereby, fine tuning Substantial
Similarity Comparisons 1010 so that the rules for finding a
match are not too strict nor too lenient.

Appropriately strict rules for substantial similarity can be
defined based on the type of Software Application 120,
experience, testing, inquiry, analysis, synthesis, or other
techniques. As such, strictness rules of Comparison Strict-
ness Function 1011 can be set by a user, by UAIE admin-
istrator, or automatically by the system based on such
experience, knowledge, and/or input. In some embodiments,

US 9,443,192 Bl

93

substantial similarity can be achieved when most of the
Instruction Set Portions 620 and/or Extra Info 630 of the
most recently used or executed Operations 610 or Instruc-
tion Sets 600 (i.e. Operation n, Operation n-1, and Opera-
tion n-2, etc.) from Operation List 510 match or substan-
tially match the Instruction Set Portions 620 and/or Extra
Info 630 of the corresponding (i.e. comparative) Operations
610 or Instruction Sets 600 from Knowledge Cell 800.
Alternatively, total equivalence is found when all Instruction
Set Portions 620 and/or Extra Info 630 of the most recently
used or executed Operations 610 or Instruction Sets 600
from Operation List 510 match the Instruction Set Portions
620 and/or Extra Info 630 of all corresponding (i.e. com-
parative) Operations 610 or Instruction Sets 600 from
Knowledge Cell 800. In other embodiments, when a total
equivalence match is not found, Substantial Similarity Com-
parison 1010 can omit less important Instruction Set Por-
tions 620 and/or Extra Info 630 from the comparison.
Importance of an Instruction Set Portion 620 and/or Extra
info 630 may be indicated by Importance index 640 (later
described) or other importance ranking technique. In one
example, some or all instruction Set Portions 620 and/or
Extra Info 630 containing values, operators, or other com-
ponents can be omitted from Substantial Similarity Com-
parison 1010. In another example, some or all Extra Info 630
can be omitted from Substantial Similarity Comparison
1010. In yet another example (i.e. context reliant applica-
tions, etc.), some or all Instruction Set Portions 620 can be
omitted from Substantial Similarity Comparison 1010.

Comparison Strictness Function 1011 comprises the func-
tionality to automatically adjust its level of strictness for
finding or determining a substantial similarity match
between the compared Operations 610 or Instruction Sets
600. Depending on design, various levels of strictness can be
used. In some embodiments, Comparison Strictness Func-
tion 1011 may set the rules for substantial similarity match
to include perfect matches between the compared Opera-
tions 610 or Instruction Sets 600. If such a match is not
found, Comparison Strictness Function 1011 can decrease
the strictness level. In some aspects, in response to decreas-
ing the strictness level, Comparison Strictness Function
1011 may set the strictness of the rules for substantial
similarity match in terms of a total equivalence with respect
to command or other portions of the Operation 610 or
Instruction Set 600 only, thereby tolerating mismatches in
variable and/or object names, for example. Comparison
Strictness Function 1011 can choose to relax the rules in
response to determining that no total equivalence match had
been found. For example, substantial similarity is achieved
when a match is found in terms of a correct operation, but
for a different object than the one presently operated on. In
such instances, upon presenting (if user confirmation is
enabled) the user with the substantial similarity match (i.e.
substantially similar knowledge cell), UAIE may give the
user an anticipatory Operation 610 or Instruction Set 600
from the matched Knowledge Cell 800, thereby allowing the
user to change object names into the ones desired, still
saving the user work on inputting the commands. In further
embodiments, Comparison Strictness Function 1011 may,
upon determining that a perfect match is not found, allow for
matching all but one of the Operations 610 or Instruction
Sets 600 from Operation List 510 or Knowledge Cell 800.
In further embodiments, Comparison Strictness Function
1011 may set the rules to find a match with all but two or
more Operations 610 or Instruction Sets 600 from Operation
List 510 or Knowledge Cell 800.

10

15

20

25

30

35

40

45

50

55

60

65

94

All the aforementioned settings of strictness of substantial
similarity can be set, or reset, by Comparison Strictness
Function 1011, in response to another strictness level deter-
mination. For example, Comparison Strictness Function
1011 may adjust strictness level for identifying or determin-
ing a substantial similarity match for an Operation 610 or
Instruction Set 600 whose instruction Set Portions 620
corresponding to command words are a total match with
Instruction Set Portions 620 of the compared Operation 610
or Instruction Set 600, while tolerating mismatches in vari-
able names, object names, and/or other components. Such an
adjustment in strictness can be done by Comparison Strict-
ness Function 1011 in response to determining that a total
equivalence match for an entire Operation 610 or Instruction
Set 600 is not found. Similarly, Comparison Strictness
Function 1011 may adjust the strictness level for identifying
or determining a substantial similarity match for an Opera-
tion 610 or Instruction Set 600 whose Instruction Set Por-
tions 620 match all but one Instruction Set Portion 620 of the
compared Operation 610 or Instruction Set 600. Also, Com-
parison Strictness Function 1011 may adjust the strictness
level for identifying or determining a substantial similarity
match for an Operation 610 or Instruction Set 600 whose
instruction Set Portions 620 match all but two or more
Instruction Set Portions 620 of the compared Operation 610
or Instruction Set 600. Such an adjustment in strictness can
be done by Comparison Strictness Function 1011 in
response to determining that not a sufficient number of
matches had been found using a higher strictness level.

Comparison Strictness Function 1011 can therefore
increase or decrease the strictness of the rules for finding or
determining a substantial similarity match depending on
whether or not perfect matches (i.e. perfect equivalents
between the compared Operations 610 or Instruction Sets
600) had been found. As such, Comparison Strictness Func-
tion 1011 can utilize two thresholds, an upper and lower
thresholds, to define the strictness of the rules used for
determining a substantial similarity match. The upper
threshold may correspond to the number of substantial
similarity matches that are too high to be presented (if user
confirmation is enabled) to the user (i.e. too many matching
results, too vague suggestions). Alternatively, the lower
threshold may correspond to the strictness level that results
in too few results to be presented (if user confirmation is
enabled) to the user, for example. Comparison Strictness
Function 1011 can make any combination of the aforemen-
tioned adjustments to achieve that the number of substantial
similarity matches between the compared Operations 610 or
Instruction Sets 600 falls between the upper and lower
thresholds. As such, Comparison Strictness Function 1011
can keep adjusting the strictness rules for finding the sub-
stantially similar match until both thresholds are satisfied,
thereby adjusting the results until the best set of results is
found.

In some designs, Comparison Strictness Function 1011
can adjust the strictness level by choosing the number of
Operations 610 or Instruction Sets 600 that it will use to find
a substantial similarity match. For example, as first three
Operations 610 or Instruction Sets 600 are used or executed,
Comparison Strictness Function 1011 may run these three
Operations 610 or Instruction Sets 600 against Knowledge
Cells 800 in Knowledgebase 530. If Substantial Similarity
Comparison 1010 provides a number of matching results
(i.e. total equivalences) that is above a particular threshold,
Comparison Strictness Function 1011 can decide to increase
the strictness of the rules to decrease the number of results.
In response, Substantial Similarity Comparison 1010 can

US 9,443,192 Bl

95

then decide to wait for a fourth Operation 610 or Instruction
Set 600 to be used or executed, thereby allowing Substantial
Similarity Comparison 1010 to use the fourth Operation 610
or Instruction Set 600 in addition to the earlier three to find
a smaller number of matching results. Once the fourth
Operation 610 or Instruction Set 600 is used or executed,
Substantial Similarity Comparison 1010 can use all four
Operations 610 or Instruction Sets 600 to find a match. If the
number of matching results (i.e. total equivalences) is suf-
ficiently small, the system may present (if user confirmation
is enabled) the user with these results. If however, the
number of matching results is still too high, Comparison
Strictness Function 1011 may determine to further increase
the strictness by requiring additional Operations 610 or
Instruction Sets 600 to be used or executed and thereby
further narrow the search results before presenting (if user
confirmation is enabled) the user with the suggested results.
In some embodiments, the additional Operations 610 or
Instruction Sets 600 may include an incomplete Operation
610 or Instruction Set 600 such as first one or more Instruc-
tion Set Portions 620 (i.e. as user is inputting them, etc.). In
other embodiments, the additional Operations 610 or
Instruction Sets 600 may include a portion of Operation 610
or Instruction Set 600 such as one or more characters, digits,
symbols, and/or other items (i.e. as user is inputting them,
etc.).

In some embodiments, to increase comparison accuracy,
Substantial Similarity Comparison 1010 can use Extra Info
630 (i.e. time stamp, contextual information, etc.) and/or
other information for finding or determining a match
between Operations 610 or Instruction Sets 600 from Opera-
tion List 510 and the corresponding (i.e. comparative)
Operations 610 or Instruction Sets 600 from Knowledge
Cells 800. Concerning time stamp, for example, user may
perform some Software Application’s 120 operations (i.e.
checking email, scanning for viruses, etc.) periodically such
as during a specific time of day, week, month, year, or other
time period. Substantial Similarity Comparison 1010 can
utilize time stamp in the comparisons to determine a match
in the case of time-sensitive Operations 610 or instruction
Sets 600.

In further embodiments, another technique for increasing
comparison accuracy of Substantial Similarity Comparison
1010 and/or adjusting strictness level of Comparison Strict-
ness Function 1011 includes semantic analysis. For
example, an Operation 610 or Instruction Set 600 from
Operation List 510 may contain an object called Customers.
Instead of or in addition to searching for the exact name
match in the corresponding (i.e. comparative) Operation 610
or Instruction Set 600 from Knowledge Cells 800, Substan-
tial Similarity Comparison 1010 can employ semantic analy-
sis and attempt to match Cust, Cst, Cstm, Cstmr, Cstmrs, or
other semantically equivalent variations of the object name
with a meaning Customers. In addition to object names,
Semantic analysis can be utilized with any differing field or
segment (i.e. Instruction Set Portion 620, Extra Info 630,
etc.) of an Operation 610 or Instruction Set 600 with
potentially same meaning such as various operators with
same meanings, various values with same meanings, various
keywords with same meanings, etc. In one example, seman-
tic analysis can be implemented using a thesaurus or dic-
tionary. In another example, semantic analysis can be imple-
mented using a table where each row comprises
semantically equivalent variations of an Instruction Set
Portion 620 and/or Extra Info 630.

Referring to FIG. 16A and FIG. 16B, some embodiments
of Importance Index 640 are illustrated. Importance Index

5

10

15

20

25

30

35

40

45

50

55

60

65

96

640 comprises the functionality for storing importance of the
element to or with which the index is assigned or associated.
Importance index 640 comprises the functionality for storing
importance of Instruction Set Portion 620 or Extra Info 630
to or with which the index is assigned or associated as shown
in FIG. 16A. Importance Index 640 comprises the function-
ality for storing importance of Operation 610 or Instruction
Set 600 to or with which the index is assigned or associated
as shown in FIG. 16B. Importance Index 640 comprises the
functionality for storing importance of Knowledge Cell 800
to or with which the index is assigned or associated. Impor-
tance Index 640 on a scale from 0 to 10 can be utilized, for
example. Any other range can also be utilized as Importance
Index 640. In some aspects, Importance Index 640 can be
used for adjusting strictness level and/or comparison accu-
racy of Substantial Similarity Comparison 1010. In one
example, a higher Importance Index 640 can be assigned to
Instruction Set Portions 620 comprising commands, func-
tions, parameters, and/or objects. In another example, a
higher Importance Index 640 can be assigned to Extra Info
630 comprising time stamps, computed information, and/or
other contextual information. In a further example, a higher
Importance Index 640 can be assigned to front-most Instruc-
tion Set Portions 620 of an Instruction Set 600 or Operation
610. In a further example, a higher Importance Index 640
can be assigned to the most recently used or executed
Operations 610 or Instruction Sets 600 in an Operation List
510. In a further example, a higher Importance Index 640
can be assigned to the most recently used or executed
comparative Operations 610 or Instruction Sets 600 in a
Knowledge Cell 800. Any Importance Index 640 can be
assigned to or associated with any Instruction Set Portion
620, Extra Info 630, Operation 610 or Instruction Set 600,
and/or other element. Assignment of Importance Indexes
640 can be implemented using a table (not shown) where
one column comprises elements, and another column com-
prises their Importance Indexes 640. For example, one
column of a table may include Instruction Set Portions 620
and/or Extra Info 630 or types of Instruction Set Portions
620 and/or Extra info 630, and another column may include
their Importance Indexes 640. Importance Indexes 640 of
various Instruction Set Portions 620 and/or Extra Info 630
can be defined based on the type of Software Application
120, experience, testing, inquiry, analysis, synthesis, or other
techniques. As such, Importance Index 640 of various
Instruction Set Portions 620 and/or Extra Info 630 can be set
by a user, by UAIE administrator, or automatically by the
system. In some aspects, Importance Indexes 640 can be
assigned to or associated with instruction Set Portions 620
and/or Extra Info 630 by Command Disassembler 500.
Importance Indexes 640 can be stored in various arrange-
ments. In one example, Importance Index 640 pertaining to
an Instruction Set Portion 620 or Extra Info 630 can be
stored in a data field of Operation 610 or instruction Set 600,
the data field associated with the instruction Set Portion 620
or Extra Info 630. In another example, Importance Index
640 pertaining to an Operation 610 or Instruction Set 600
can be stored in Extra Info 630 or any data field of the
Operation 610 or Instruction Set 600. In a further example,
Importance Index 640 pertaining to a Knowledge Cell 800
can be stored in a data field of the Knowledge Cell 800. In
a further example, Importance Index 640 can be associated
with an Instruction Set Portion 620, Extra Info 630, Opera-
tion 610 or Instruction Set 600, Knowledge Cell 800, or
other element and stored somewhere else such as in a
separate repository.

US 9,443,192 Bl

97

Referring to FIG. 17A and FIG. 17B, some embodiments
of Comparison Accuracy Index 650 (also referred to as
Comp Acc Index) are illustrated. Comparison Accuracy
Index 650 comprises the functionality for storing a measure
of how well an element to or with which the index is
assigned or associated is matched with another element.
Comparison Accuracy Index 650 comprises the functional-
ity for storing a measure of how well a Knowledge Cell 800
such as, for example, Substantially Similar Knowledge Cell
1110 (later described) to or with which the index is assigned
or associated is matched with Operation List 510 as shown
in FIG. 17A. Comparison Accuracy Index 650 comprises the
functionality for storing a measure of how well an Operation
610 or Instruction Set 600 to or with which the index is
assigned or associated is matched with another Operation
610 or Instruction Set 600 as shown in FIG. 17B. Compari-
son Accuracy Index 650 comprises the functionality for
storing a measure of how well an Instruction Set Portion 620
and/or Extra Info 630 to or with which the index is assigned
or associated is matched with another Instruction Set Portion
620 and/or Extra Info 630. Comparison Accuracy Index 650
comprises the functionality for storing a measure of how
well a Knowledge Cell 800 to or with which the index is
assigned or associated is matched with another Knowledge
Cell 800. Comparison Accuracy Index 650 on a scale from
0to 10 can be utilized, for example. Any other range can also
be utilized as Comparison Accuracy Index 650. In some
designs, Comparison Accuracy Index 650 can be determined
during Substantial Similarity Comparison 1010 based on
how well matched are the compared Operations 610 or
Instruction Sets 600. In one example, Comparison Accuracy
Index 650 can be determined for an Operation 610 or
Instruction Set 600 based on a ratio/percentage of matched
instruction Set Portions 620 and/or Extra Info 630 relative to
the number of all Instruction Set Portions 620 and/or Extra
Info 630 in the Operation 610 or Instruction Set 600.
Specifically, Comparison Accuracy Index 650 of 10 is
determined if all Instruction Set Portions 620 and/or Extra
Info 630 match. Similarly, Comparison Accuracy Index 650
of 8.2 is determined if 82% of Instruction Set Portions 620
and/or Extra Info 630 match. In another example, impor-
tance (as indicated by Importance index 640 or other impor-
tance ranking technique) of one or more Instruction Set
Portion 620 and/or Extra Info 630 may be included in the
calculation of a weighted Comparison Accuracy Index 650.
Any other formula or technique can be utilized to determine
or calculate Comparison Accuracy Index 650. Comparison
Accuracy Index 650 can be stored in various arrangements.
In one example, Comparison Accuracy Index 650 pertaining
to a Substantially Similar Knowledge Cell 1110 or any
Knowledge Cell 800 can be stored in a data field of the
Substantially Similar Knowledge Cell 1110 or any Knowl-
edge Cell 800. In another example, Comparison Accuracy
index 650 pertaining to an Operation 610 or Instruction Set
600 can be stored in Extra Info 630 or any data field of the
Operation 610 or Instruction Set 600. In a further example,
Comparison Accuracy Index 650 can be associated with a
Knowledge Cell 800, Operation 610 or Instruction Set 600,
or other element and stored somewhere else such as in a
separate repository. Comparison Accuracy Index 650 can be
used for various purposes. In one example, Comparison
Accuracy Index 650 can be presented to a user in User
Confirmation 1130 to help streamline the confirmation pro-
cess (if user confirmation is enabled). In another example,
Comparison Accuracy Index 650 can be used to autono-
mously execute anticipatory Operations 610 or Instruction
Sets 600 without user confirmation if the index is sufficiently

10

15

20

25

30

35

40

45

50

55

60

65

98

high (i.e. 9 or 10 on a 0-10 scale, etc.). In a further example,
Comparison Accuracy index’s 650 indication of how well
matched are Operations 610 or Instruction Sets 600 from
Operation List 510 and a Knowledge Cell 800 in Substantial
Similarity Comparison 1010 can be used to determine how
many anticipatory Operations 610 or Instruction Sets 600
from the Knowledge Cell 800 may be anticipated. For
instance, if a perfect or strong substantial similarity match is
found between Operations 610 or Instruction Sets 600 from
Operation List 510 and a Knowledge Cell 800 (i.e. Substan-
tially Similar Knowledge Cell 1110, etc.), the system may
decide to anticipate all anticipatory Operations 610 or
Instruction Sets 600 from the Knowledge Cell 800. Con-
versely, if a weak substantial similarity match is found, the
system may decide to anticipate only one or a few antici-
patory Operations 610 or Instruction Sets 600 from the
Knowledge Cell 800. Any other number of anticipatory
Operations 610 or Instruction Sets 600 can be anticipated in
between the two ends of the spectrum depending on Com-
parison Accuracy Index 650. Comparison Accuracy Index
650 can be used for any other purpose.

Referring to Decision-making Unit 540, in some embodi-
ments, Decision-making Unit 540 comprises the function-
ality for analyzing context in which Instruction Sets 600 or
Operations 610 have been performed, and/or other function-
alities. In other embodiments, Decision-making Unit 540
comprises computational functionalities for creating or ana-
lyzing computed information. Computed information can be
created or analyzed by performing computations using
Instruction Set Portions 620, Extra Info 630, contextual
information, time information, geo-spatial information,
environmental information, situational information,
observed information, other computed information, pre-
computed information, analyzed information, inferred infor-
mation, and/or other information. In further embodiments,
Decision-making Unit 540 comprises the functionality to
create or analyze inferred information. Inferred information
can be created or analyzed by drawing an inference from
Instruction Set Portions 620, Extra Info 630, contextual
information, time information, geo-spatial information,
environmental information, situational information,
observed information, computed information, pre-computed
information, analyzed information, other inferred informa-
tion, and/or other information. These functionalities can be
utilized in some implementations of Substantial Similarity
Comparisons 1010 to find the most accurate substantially
similar knowledge cell for particular types of Software
Applications 120 such as context reliant applications (i.e.
certain computer games, etc.). In one example, Decision-
making Unit 540 may analyze a Knowledge Cell 800 that
represents movements of a user’s character (i.e. avatar, etc.)
in a computer game. Decision-making Unit 540 can infer
that, in a situation where a specific object (i.e. opponent
character, building, forest, rock, etc.) was near, user’s char-
acter (i.e. avatar, etc.) had moved toward the object. The
inference that user’s character had moved toward the object
can be drawn by computing that the distance between the
user’s character and the object decreased. The computations
can be performed using coordinates of user’s character,
coordinates of the object (i.e. opponent character, building,
forest, rock, etc.), and/or other attributes, properties, Extra
Info 630, location information, or other information. The
computations or estimations can be performed using
Pythagorean theorem, Euclidean distance formula, trigo-
nometry, and/or other theorems, formulas, or disciplines, as
applicable. In other examples, user’s character’s bearing,
speed, and/or other attributes, properties, or other informa-

US 9,443,192 Bl

99

tion can similarly be computed. In some aspects, computed
contextual or other information (i.e. distance, bearing,
speed, etc.) can be stored in Extra info 630 of an Operation
610 or Instruction Set 600, in a Knowledge Cell 800, or in
another repository to be used later in the process (i.e. in
Confirmation Unit 550, Context Interpreter 1120, etc.).
Decision-making Unit 540 may include some or all the
features and embodiments of Confirmation Unit 550 and/or
Context interpreter 1120 described later.

Referring to FIG. 18, Confirmation Unit 550 comprises
the functionality for confirming, editing (i.e, modifying,
etc.), evaluating (i.e. rating, etc.), and/or canceling antici-
patory Operations 610 or Instruction Sets 600 (i.e. antici-
pated Software Application’s 120 instructions or operations,
etc.), and/or other functionalities. Confirmation Unit 550
comprises the functionality for analyzing or interpreting
context in which Instruction Sets 600 or Operations 610 may
have been performed. Confirmation Unit 550 comprises the
functionality for modifying anticipatory Operations 610 or
Instruction Sets 600 (i.e. anticipated Software Application’s
120 instructions or operations) based on context analysis or
interpretation. Confirmation Unit 550 may include some or
all features, functionalities, and embodiments of Decision-
making Unit 540 as applicable.

Confirmation Unit 550 comprises Substantially Similar
Knowledge Cell 1110, Context Interpreter 1120, Operation
Modifier 1121, User Confirmation 1130, and Operation List
510. Other additional elements can be included as needed, or
some of the disclosed ones can be excluded, or a combina-
tion thereof can be utilized in alternate embodiments. In
some aspects, Substantially Similar Knowledge Cell 1110 is
a Knowledge Cell 800 whose comparative Operations 610
or Instruction Sets 600 are found or determined to be
substantially similar to the most recently used or executed
Operations 610 or Instruction Sets 600 from Operation List
510. Substantially Similar Knowledge Cell 1110 may there-
fore be a result of or output from Decision-making Unit 540,
Substantial Similarity Comparison 1010, and/or other
related elements or steps.

In some embodiments, Confirmation Unit 550 can serve
as a means of confirming anticipatory Operations 610 or
Instruction Sets 600. For example, UAIE may determine
most likely anticipatory Operations 610 or Instruction Sets
600 and provide them to User 50 for confirmation. User 50
may be provided with an interface (i.e. graphical user
interface, selectable list of anticipatory Operations 610 or
Instruction Sets 600, etc.) to approve or confirm execution of
the anticipatory Operations 610 or instruction Sets 600. In
other embodiments, Confirmation Unit 550 can serve as a
means of editing or modifying anticipatory Operations 610
or Instruction Sets 600. For example, UAIE may determine
most likely anticipatory Operations 610 or Instruction Sets
600 and provide them to User 50 for editing. User 50 may
be provided with an interface (i.e. graphical user interface,
etc.) to edit the anticipatory Operations 610 or instruction
Sets 600 before their execution. In further embodiments,
Confirmation Unit 550 can serve as a means of evaluating or
rating anticipatory Operations 610 or Instruction Sets 600 if
they matched the indented operation of User 50. For
example, UAIE may determine most likely anticipatory
Operations 610 or Instruction Sets 600 and autonomously
execute them. User 50 may be provided with an interface
(i.e. graphical user interface, etc.) to rate (i.e. on a scale from
0 to 10, etc.) how well UAIE predicted anticipatory Opera-
tions 610 or Instruction Sets 600. Similar to the previously
described Comparison Accuracy Index 650, a rating can be
stored in the rated anticipatory Operation 610 or Instruction

10

15

20

25

30

35

40

45

50

55

60

65

100

Set 600, in Extra info 630 of the rated anticipatory Operation
610 or Instruction Set 600, in the rated Substantially Similar
Knowledge Cell 1110 or any Knowledge Cell 800, and/or in
other repository for improvement of future decision making
or matching. In some aspects, rating can be automatic and
based on a particular function or method that rates how well
the anticipatory Operations 610 or Instruction Sets 600
matched the desired operation. In one example, a rating
function or method can assign a higher rating to anticipatory
Operations 610 or Instruction Sets 600 that were least
modified in the confirmation process. In another example, a
rating function or method can assign a higher rating to
anticipatory Operations 610 or Instruction Sets 600 that
were canceled least number of times by User 50. Any other
automatic rating function or method can be utilized. In yet
other embodiments, Confirmation Unit 550 can serve as a
means of canceling anticipatory Operations 610 or Instruc-
tion Sets 600 if they did not match the indented operation of
User 50. For example, UAIE may determine most likely
anticipatory Operations 610 or Instruction Sets 600 and
autonomously execute them. UAIE may save the state of
Software Application 120 (i.e. save its variables, data struc-
tures, objects, location of its current instruction, and/or other
necessary elements in files, databases, environmental vari-
ables, data structures, objects, etc.) before executing antici-
patory Operations 610 or Instruction Sets 600. User 50 may
be provided with an interface (i.e. selectable list of prior
executed anticipatory Operations 610 or Instruction Sets
600, etc.) to cancel one or more of the prior executed
anticipatory Operations 610 or Instruction Sets 600, and
restore Software Application 120 or Computing Device 70
to a prior state. Similar to the previously described rating, a
cancelation can be stored in the canceled anticipatory Opera-
tion 610 or Instruction Set 600, in Extra info 630 of the
canceled anticipatory Operation 610 or Instruction Set 600,
in a canceled Substantially Similar Knowledge Cell 1110 or
any Knowledge Cell 800, and/or in other repository for
improvement of future decision making or matching.
Context Interpreter 1120 comprises the functionality for
analyzing or interpreting a context in which Operations 610
or Instruction Sets 600 were performed, and/or other func-
tionalities. Context Interpreter 1120 comprises the function-
ality for analyzing or interpreting a context in which Opera-
tions 610 or Instruction Sets 600 from Operation List 510
and/or Knowledge Cells 800 were performed. In some
embodiments, context includes any information related to an
Operation 610 or Instruction Set 600 such as its type, time
(i.e. time stamp, etc.) of its execution, and/or other contex-
tual information. In other embodiments, context includes
any information related to Software Application 120 and/or
Computing Device 70 such as type of Software Application
120 (i.e. web browser, game, word processing, database,
CAD/CAM software, etc.), type of Computing Device 70
executing Software Application 120, version of Software
Application 120, type of User 50 (novice, moderate, skilled,
expert), user specific information, group user information,
and/or other contextual information. In other embodiments,
context includes any component of Instruction Set 600 not
captured as an Instruction Set Portion 620, any Instruction
Set Portion 620 or component thereof that is not used in
Substantial Similarity Comparison 1010, and/or any infor-
mation about Operation 610 or Instruction Set 600 that may
be useful in anticipating Software Application’s 120 future
operations (i.e. anticipatory Operations 610 or Instruction
Sets 600). In general, context or contextual information may
include any Instruction Set Portion 620, Extra Info 630, time
information, geo-spatial information, environmental infor-

US 9,443,192 Bl

101

mation, situational information, observed information, com-
puted information, pre-computed information, analyzed
information, inferred information, and/or other information.
Contextual information can be stored in Extra Info 630 of an
Operation 610, in Knowledge Cell 800, in Knowledgebase
530, and/or in other data structure or repository. In some
aspects, Context interpreter 1120 performs an extra analysis
step and it attempts to capture information, steps, and/or
elements that may have been omitted by Command Disas-
sembler 500, Knowledge Structuring Unit 520, Decision-
making Unit 540, Substantial Similarity Comparison 1010,
and/or by other elements or steps.

In some embodiments, Context Interpreter 1120 com-
prises the functionality for obtaining observable information
such as reading time from system clock, reading user or
group information from operating system’s user or group
account files, reading type or version of Software Applica-
tion 120 from Software Application’s 120 system files,
reading type of Computing Device 70 from operating sys-
tem’s files, obtaining coordinates or other attributes of an
object from an application’s work files or runtime engine,
and/or obtaining other observable information. In other
embodiments, Context Interpreter 1120 comprises the func-
tionality for reading or extracting values or ranges of values
from Instruction Set Portions 620 and/or Extra info 630 of
an Operation 610 or Instruction Set 600, and/or reading or
extracting values or ranges of values from other elements. In
other embodiments, Context Interpreter 1120 comprises the
functionality for drawing inferences such as whether value
of a variable or parameter is increasing or decreasing in
consecutive Operations 610 or Instruction Sets 600, whether
an object is approaching or retreating from another object,
whether an object is moving in a direction of another object,
and/or drawing other inferences. Any of the previously
described features, functionalities, and embodiments related
to inference-making can be used in Context interpreter 1120.
In further embodiments, Context Interpreter 1120 comprises
computational functionalities to create or analyze computed
information such as computing an object’s distance, bearing/
direction, speed, and/or other attributes, properties, or infor-
mation. Any of the previously described features, function-
alities, and embodiments related to computed information
can be used in Context Interpreter 1120. In further embodi-
ments, Context Interpreter 1120 comprises semantic analysis
functionalities such as utilizing semantically equivalent
variations of an object’s name to find a match, and/or
utilizing semantically equivalent variations of other ele-
ments. Any of the previously described features, function-
alities, and embodiments related to semantic analysis can be
used in Context Interpreter 1120. Context Interpreter 1120
comprises the functionality for performing any other context
analysis or interpretation.

In some aspects, Context Interpreter 1120 includes Opera-
tion Modifier 1121 (also referred to as automatic operation
modifier, etc.). Operation Modifier 1121 comprises the func-
tionality for modifying an Operation 610 or Instruction Set
600. Operation Modifier 1121 comprises the functionality
for modifying an Operation 610 or Instruction Set 600 (i.e.
anticipatory Operation 610 or Instruction Set 600, etc.) by
replacing one or more Instruction Set Portions 620 and/or
Extra Info 630 of the Operation 610 or Instruction Set 600.
Operation Modifier 1121 comprises the functionality for
modifying an Operation 610 or Instruction Set 600 (i.e.
anticipatory Operation 610 or Instruction Set 600, etc.)
based on context analysis or interpretation, observation,
inferences drawn, computation, and/or other functionalities
of Context Interpreter 1120, Decision-making Unit 540,

10

15

20

25

30

35

40

45

50

55

60

65

102

and/or other elements. Operation Modifier 1121 comprises
the functionality for modifying an Operation 610 or Instruc-
tion Set 600 (i.e. anticipatory Operation 610 or Instruction
Set 600, etc.) based on any technique, function, or method
such as, for example, function for projecting, computing, or
estimating a path, movement, or trajectory of any objects or
other items in Software Application 120. Operation Modifier
1121 comprises the functionality for modifying one or more
Operations 610 or Instruction Sets 600 of Substantially
Similar Knowledge Cell 1110 or any Knowledge Cell 800.

In one example of a computer game application, Substan-
tially Similar Knowledge Cell 1110 includes Operations 610
or instruction Sets 600 that store movements of a user’s
character (i.e. avatar, etc.) in instruction Set Portions 620
and that store any contextual information (i.e. nearby
objects, nearby object’s coordinates, nearby object types,
etc.) in Extra Info 630. The instruction Set Portions 620 may
include portions of a function (i.e. moveAvatar(Xcoord,
Ycoord, . . .), etc.) used to implement movements of user’s
character. Context Interpreter 1120, Decision-making Unit
540, or other element with context interpreting functional-
ities can infer that user’s character moved north toward a
specific object (i.e. opponent character, building, forest,
rock, etc.), for example, based on the coordinates of the
movement function stored in Instruction Set Portions 620
and coordinates of nearby objects stored in Extra Info 630.
The inference that user’s character moved toward the object
can be drawn from a determination that the distance between
the user’s character and the object decreased. If user’s
character encounters a situation that includes a similar object
(i.e. opponent character, building, forest, rock, etc.) east of
user’s character, for example, Operation Modifier 1121 can
then modify or replace Instruction Set Portions 620 repre-
senting movement coordinates of anticipatory Operations
610 or Instruction Sets 600 of Substantially Similar Knowl-
edge Cell 1110, thereby causing movement of user’s char-
acter east toward the object regardless of where those
coordinates pointed before the modification. Any inferences
can be drawn related to any other information such as
distance, bearing/direction, speed, and/or other attributes,
properties, or information.

In another example, Context Interpreter 1120, Decision-
making Unit 540, or other element with context interpreting
functionalities can project a path, movement, or trajectory of
user’s character or other object based on a computed or
estimated formula of the user’s character’s or other object’s
prior movement coordinates. In some aspects, user’s char-
acter’s and/or other object’s prior movement coordinates can
be read or extracted from Instruction Set Portions 620 and/or
Extra Info 630 of comparative Operations 610 or instruction
Sets 600 of Substantially Similar Knowledge Cell 1110. A
mathematical or computational technique, function, or
method can then be applied to compute or estimate the
formula that best fits or describes the coordinates. Examples
of the mathematical or computational techniques, functions,
or methods for computing or estimating the formula include
best fit, trend, curve fitting, linear least squares, non-linear
least squares, and/or other techniques, functions, or meth-
ods. Examples of formulas for a path, movement, or trajec-
tory include any linear (i.e. flat, angular, diagonal, etc.),
non-linear (i.e. curved, circular, elliptical, rectangular, tri-
angular, zig-zag, etc.), or other formula. Subsequent move-
ment coordinates can then be calculated using the formula.
Operation Modifier 1121 can then modify or replace Instruc-
tion Set Portions 620 representing movement coordinates of
anticipatory Operations 610 or Instruction Sets 600 of
Substantially Similar Knowledge Cell 1110, thereby causing

US 9,443,192 Bl

103

movement of the user’s character or other object on the
projected path, movement, or trajectory. Similar techniques,
functions, or methods can be utilized for projecting a series
or sequence of values. For example, user may input a series
or sequence of values such as [4, 5, 6] into an input object
(i.e. text box, cell, etc.) of an object-oriented or forms-based
Software Application 120. A mathematical or computational
technique, function, or method can then be applied to
compute or estimate the formula that best fits or describes
the series or sequence. Context interpreter 1120, Decision-
making Unit 540, or other element with context interpreting
functionalities can project subsequent values (i.e. [7, 8,
9, ...], etc.) in the series or sequence using the formula.
Operation Modifier 1121 can then modify or replace Instruc-
tion Set Portions 620 representing the input values of
anticipatory Operations 610 or Instruction Sets 600 of
Substantially Similar Knowledge Cell 1110, thereby causing
autonomous input of values of the projected series or
sequence. Any series or sequence can similarly be projected
examples of which include [1,2,3,...1,[2,3,5,...],[14,
16,18, ...1,[32,42,52,...1],[93, 103, 113, . . .], [257,
307,357, ...1,[10, 20, 30, . . .1, [100, 200, 300, . . .], [1000,
2000, 3000, . . .], and/or others.

In a further example, Context Interpreter 1120, Decision-
making Unit 540, or other elements with context interpreting
functionalities can read or extract values or ranges of values
from Instruction Set Portions 620 and/or Extra Info 630 of
one or more Operations 610 or Instruction Sets 600. The one
or more Operations 610 or Instruction Sets 600 can be stored
in Operation List 510, Substantially Similar Knowledge Cell
1110 or any Knowledge Cell 800, or other data structure or
repository. Operation Modifier 1121 can then modify or
replace Instruction Set Portions 620 of anticipatory Opera-
tions 610 or Instruction Sets 600 of Substantially Similar
Knowledge Cell 1110 with the extracted values, thereby
configuring anticipatory Operations 610 or Instruction Sets
600 to execute with same values or ranges of values as in
previously used or implemented Operations 610 or Instruc-
tion Sets 600. Similarly, Context Interpreter 1120, Decision-
making Unit 540, or other elements with context interpreting
functionalities can read or extract object names from
Instruction Set Portions 620 and/or Extra Info 630 of one or
more Operations 610 or Instruction Sets 600. Operation
Modifier 1121 can then modify or replace Instruction Set
Portions 620 of anticipatory Operations 610 or Instruction
Sets 600 of Substantially Similar Knowledge Cell 1110 with
the extracted object names, thereby configuring anticipatory
Operations 610 or Instruction Sets 600 to execute with same
object names as in previously used or implemented Opera-
tions 610 or Instruction Sets 600. Any other numeric or
non-numeric values or ranges thereof can be similarly
extracted and utilized.

In a further example, Context Interpreter 1120, Decision-
making Unit 540, or other elements with context interpreting
functionalities can perform semantic analysis to determine
that a semantically equivalent variation of an Instruction Set
Portion 620 and/or Extra Info 630 is utilized in an Operation
610 or Instruction Set 600. Semantic analysis can be imple-
mented using thesaurus or dictionary, or a table comprising
semantically equivalent variations of Instruction Set Por-
tions 620 and/or Extra Info 630 as previously described.
Operation Modifier 1121 can then modify or replace instruc-
tion Set Portions 620 of anticipatory Operations 610 or
Instruction Sets 600 of Substantially Similar Knowledge
Cell 1110 with the correct semantically equivalent variation
of the instruction Set Portions 620, thereby configuring
anticipatory Operations 610 or Instruction Sets 600 to

10

20

25

30

35

40

45

50

55

60

65

104

execute with same variation of the Instruction Set Portions
620 as in previously used or implemented Operations 610 or
Instruction Sets 600. For instance, object name customer and
cstmr referring to the same object can be used in different
Operations 610 or Instruction Sets 600, thereby needing
semantic analysis to equate the two object names.

In a further example, Context Interpreter 1120, Decision-
making Unit 540, or other elements with context interpreting
functionalities can obtain observable information such as
system time, coordinates or other attributes of an object, user
or group specific information, type or version of Software
Application 120, type of Computing Device 70, and/or other
observable information as previously described. Operation
Modifier 1121 can be configured to modify or replace
instruction Set Portions 620 of anticipatory Operations 610
or Instruction Sets 600 of Substantially Similar Knowledge
Cell 1110 differently for different observable information. In
one instance, Operation Modifier 1121 may modify or
replace Instruction Set Portions 620 of anticipatory Opera-
tions 610 or Instruction Sets 600 of Substantially Similar
Knowledge Cell 1110 differently for different users or
groups of users. Specifically, in this instance, Operation
Modifier 1121 may modify or replace Instruction Set Por-
tions 620 representing movement of user’s character or other
object in anticipatory Operations 610 or Instruction Sets 600
of Substantially Similar Knowledge Cell 1110 to cause
slower movement of the user’s character or other object for
novice users or groups of users in a computer game appli-
cation. In another instance, Operation Modifier 1121 may
modify or replace Instruction Set Portions 620 of anticipa-
tory Operations 610 or Instruction Sets 600 of Substantially
Similar Knowledge Cell 1110 differently for different times
of day, month, year, or other time period. Specifically, in this
instance, Operation Modifier 1121 may modify or replace
instruction Set Portions 620 representing temperature values
in anticipatory Operations 610 or Instruction Sets 600 of
Substantially Similar Knowledge Cell 1110 to allow lower
temperature in a building during the night in an energy
management application. In a further instance, Operation
Modifier 1121 may modify or replace Instruction Set Por-
tions 620 of anticipatory Operations 610 or Instruction Sets
600 of Substantially Similar Knowledge Cell 1110 differ-
ently for different Computing Devices 70, Computing
Device 70 configurations (i.e. different displays, different
display settings, different /O devices, different processors,
etc.), versions of Software Application 120, and/or other
considerations. Specifically, in this instance, Operation
Modifier 1121 may modify or replace Instruction Set Por-
tions 620 representing movement of user’s character or other
object in anticipatory Operations 610 or Instruction Sets 600
of Substantially Similar Knowledge Cell 1110 to cause the
movement of the user’s character or other object to appear
correctly on smaller screens in a computer game application.

Any combinations of the disclosed and/or other features,
functionalities, and embodiments of Operation Modifier
1121 can be utilized in alternate implementations.

In some embodiments, Comparison Accuracy index’s 650
or other comparison ranking technique’s indication of how
well matched are Operations 610 or instruction Sets 600
from Operation List 510 and a Knowledge Cell 800 in
Substantial Similarity Comparison 1010 can be used to
determine how much anticipatory Operations 610 or Instruc-
tion Sets 600 from the Knowledge Cell 800 should be
modified. For instance, if a perfect or strong substantial
similarity match is found between Operations 610 or instruc-
tion Sets 600 from Operation List 510 and a Knowledge Cell
800 (i.e. Substantially Similar Knowledge Cell 1110, etc.),

US 9,443,192 Bl

105

anticipatory Operations 610 or Instruction Sets 600 from the
Knowledge Cell 800 may not need to be modified at all.
Conversely, if a weak substantial similarity match is found,
anticipatory Operations 610 or Instruction Sets 600 from the
Knowledge Cell 800 may need to be modified substantially.
Any amount of modification can be implemented in between
the two ends of the spectrum. If modification is needed,
Operations 610 or Instruction Sets 600 from Substantially
Similar Knowledge Cell 1110 or other Knowledge Cell 800
can be modified using any of the previously described or
other techniques such as inferring, projecting, computing,
inserting extracted values, performing semantic analysis,
inserting obtained observable information, and/or others. In
some aspects, after the initial modification, Operations 610
or Instruction Sets 600 from Operation List 510 can be
re-compared (i.e. by Substantial Similarity Comparison
1010, etc.) with the modified Operations 610 or Instruction
Sets 600 from Substantially Similar Knowledge Cell 1110 to
find whether a better substantial similarity is found. This
process can be performed iteratively until Operations 610 or
Instruction Sets 600 from Substantially Similar Knowledge
Cell 1110 are modified for optimal substantial similarity
with Operations 610 or Instruction Sets 600 from Operation
List 510. Such optimally modified Operations 610 or
Instruction Sets 600 from Substantially Similar Knowledge
Cell 1110 may include optimal or optimally modified antici-
patory Operations 610 or instruction Sets 600.

User Confirmation 1130 comprises the functionality for
enabling a user to confirm and/or edit anticipatory Opera-
tions 610 or Instruction Sets 600, and/or other functional-
ities. In some aspects, User Confirmation 1130 comprises
the functionality for automating user confirmation if com-
parison accuracy information (i.e. Comparison Accuracy
Index 650, etc.) is available as previously described. In one
example, if one or more comparative Operations 610 or
Instruction Sets 600 from Substantially Similar Knowledge
Cell 1110 were found to be a perfect or highly accurate
match, anticipatory Operations 610 or Instruction Sets 600
can be autonomously executed without asking user to con-
firm them. Conversely, if one or more comparative Opera-
tions 610 or Instruction Sets 600 from Substantially Similar
Knowledge Cell 1110 were found to be less than a highly
accurate match, anticipatory Operations 610 or Instruction
Sets 600 can be presented to user for confirmation and/or
editing including presenting comparison accuracy informa-
tion (i.e. Comparison Accuracy Index 650, etc.) for user’s
consideration. In some aspects, depending on the type of
Software Application 120 and/or other factors, User Con-
firmation 1130 and/or other elements of Confirmation Unit
550 can optionally be disabled or omitted in order to provide
an uninterrupted operation of Software Application 120. For
example, a form-based application may be suitable for
implementing the user confirmation step, whereas, a game
may be less suitable for implementing such interrupting step
due to the real time nature of game playing/execution.

Referring to FIG. 19, Command Assembler 560 com-
prises the functionality for assembling an instruction Set
600, and/or other functionalities. Command Assembler 560
comprises the functionality for assembling an Instruction Set
600 from Instruction Set Portions 620 stored in Operation
610. Command Assembler 560 may, in effect, perform a
reverse action relative to Command Disassembler 500. In
some aspects, Instruction Set 600 can be passed directly to
Operation List 510 without being disassembled in which
case Command Disassembler 500 and/or any if its elements
may be omitted from the overall system. In such implemen-
tations, Operation List 510, Knowledge Cells 800, Knowl-

10

15

20

25

30

35

40

45

50

55

60

65

106

edgebase 530, Neural Network 850 (later described), and/or
data structures or repositories may include original Instruc-
tion Sets 600 instead of disassembled Operations 610. As
such, Substantial Similarity Comparisons 1010 can be per-
formed either directly (i.e. letter for letter, word for word,
etc.) between Instruction Sets 600 or indirectly by perform-
ing extraction or disassembling of Instruction Set Portions
620 in the comparison step. If Operations 610 are not used
and no assembly of various Instruction Set Portions 620 is
needed, Command Assembler 560 may simply verify that an
Instruction Set 600 is ready for use or execution, or Com-
mand Assembler 560 may be omitted.

In some embodiments, instead of or in addition to execut-
ing anticipatory Operations 610 or Instruction Sets 600,
UAIE or any disclosed element can trigger an external
application or process. The external application or process
may be an application or process of a system within which
Software Application 120 or UAIE operates or with which
Software Application 120 or UAIE is connected (i.e. over a
network, etc.). For example, UAIE can be used or embedded
within a smartphone including a digital camera where UAIE
may learn that user often posts a captured photo on an
Internet’s photo sharing service such as flickr.com, tinypic.
com, imgur.com, postimage.org, photobucket.com, and/or
other photo sharing service. UAIE can trigger an Internet
photo sharing application or process in response to user’s
capturing a digital photograph through the digital camera’s
photo capturing software (i.e. digital camera’s Software
Application 120).

In other embodiments, UAIE can attach to and learn
operations of more than one or even all applications on a
computing device simultaneously. Acquisition and Modifi-
cation Interface 110 can obtain instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) of any application through
tracing or profiling, and/or other previously described tech-
niques. Instructions (i.e. Instruction Sets 600 or Operations
610, etc.) of any application obtained by Acquisition and
Modification Interface 110 may be learned and later autono-
mously implemented as previously described. In some
aspects, all instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) of more than one application may be learned
in the order in which the instructions occurred. In other
aspects, all instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) of a primary application may be learned
where instructions of additional applications may be learned
only if they are significantly related to the primary applica-
tion. In one example, a user may often save a text file and
email it to someone (i.e. emailing work to his/her boss, etc.).
UALIE can learn text file saving instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) of the word processing
application and/or contextual information (i.e. Extra Info
630, etc.) such as file name or portions thereof. UAIE can
also learn text file emailing instructions (i.e. Instruction Sets
600 or Operations 610, etc.) of the email application and/or
contextual information (i.e. Extra Info 630, etc.) such as
email address to which the text file was sent. When user
saves a text file with similar name in the future, UAIE can
implement text file emailing autonomously. In another
example, a user may often receive calls on his/her smart-
phone from phone numbers that user does not recognize (i.e.
phone number not in user’s contacts, etc.) and, before
answering the call, user may seek information about the
phone number on a phone number lookup website (i.e.
callercenter.com, numberguru.com, etc.) through smart-
phone’s web browser. UAIE can learn call receiving instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.) of the
telephonic application and/or contextual information (i.e.

US 9,443,192 Bl

107

Extra Info 630, etc.) such as phone number or portions
thereof. UAIE can also learn phone number lookup instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.) of the
web browser and/or contextual information (i.e. Extra Info
630, etc.) such as the web site that was used to lookup
information about the phone number. When user receives a
call from a phone number that user does not recognize in the
future, UAIE can implement information lookup on the
phone number through a web browser autonomously to help
user decide whether to answer the call.

In further embodiments, UAIE can be configured to run
automatically and/or perform Software Application 120
operations completely autonomously. For example, UAIE
and/or any disclosed element may periodically (i.e. daily,
weekly, monthly, yearly, etc.) automatically run to analyze
(i.e. through Substantial Similarity Comparison 1010 or
other process, etc.) time stamps of some or all Operations
610 or Instruction Sets 600 in Knowledgebase 530, Neural
Network 850 (later described), or other data structure or
repository to determine which Operations 610 or Instruction
Sets 600 have been used or executed in particular time
periods. If repetitive Operations 610 or Instruction Sets 600
are found in specific time periods, they can be executed
automatically regardless of whether Software Application
120 is running and/or without User’s 50 confirmation. In
some aspects, automatic execution can be conditional, for
example, upon how accurate or confident the substantial
similarity match is as indicated by Comparison Accuracy
Index 650 or other comparison accuracy ranking technique.
Other determinations in addition to analyzing the time stamp
can be performed in alternate embodiments.

In further embodiments, UAIE can implement or execute
anticipatory instructions (i.e. anticipatory Instruction Sets
600 or Operations 610, etc.) from a Substantially Similar
Knowledge Cell 1110 prior to, during, or after execution of
instructions from another Substantially Similar Knowledge
Cell 1110. For example, as anticipatory Operations 610 or
Instruction Sets 600 from one Substantially Similar Knowl-
edge Cell 1110 are executed, UAIE may find another Sub-
stantially Similar Knowledge Cell 1110 that is a better fit
from that point on. Anticipatory Operations 610 or Instruc-
tion Set 600 from the newly found Substantially Similar
Knowledge Cell 1110 can then be executed.

Referring to FIG. 20, in some aspects, instead of or in
addition to information stored in Extra Info 630, UAIE may
include additional information either within Knowledgebase
530, within additional knowledgebases, or within any other
element of the overall system. This additional information
can assist Substantial Similarity Comparison 1010 and/or
other elements or process steps in performance of their
respective functions (i.e. more accurately anticipate Soft-
ware Application’s 120 future operations, etc.). For
example, UAIE may include additional knowledgebases
such as User Specific Information 532, Group Specific
Information 534, and/or other additional knowledgebases.
These additional knowledgebases can be directly or opera-
tively coupled with Knowledgebase 530 and/or with any
other elements of the system as needed.

User Specific Information 532, or User Specific Info 532
comprises the functionality for storing information pertain-
ing to a specific user, and/or other functionalities. There may
be plurality of User Specific Infos 532 on the system, one for
each user. User Specific Info 532 may include information
on the most prevalent Operations 610 or Instruction Sets 600
the user may be using, information on objects on which the
user may have most often performed operations, information
on types of Operations 610 or Instruction Sets 600 the user

10

25

40

45

108

most often performs, information on the sequence of Opera-
tions 610 or Instruction Sets 600 which the user may
perform or have performed most often, and more. User
Specific Info 532 may further include the information along
with a time stamp for each Operation 610 or Instruction Set
600 which the user has performed in the past, thereby
allowing the system to determine which Operations 610 or
Instruction Sets 600 the user has most recently been using
and which Operations 610 or Instruction Sets 600 the user
has not used in a while.

Group Specific Information 534, or Group Specific Info
534 comprises the functionality for storing information
pertaining to a group of users, and/or other functionalities.
The group of users may be a group having a particular access
level to Software Application 120, such as for example
group of administrators, group of general users, group of
managers, group of guests, and more. Each group can be
given a different access level and different level of control
over the system. There may be plurality of or Group Specific
Infos 534 on the system, one for each group of users. Group
Specific Info 534 may include the information on the most
prevalent Operations 610 or Instruction Sets 600 the users of
the group may be using, information on objects on which the
users of the group may have most often performed opera-
tions, information on types of operations the users of the
group most often perform, information on the sequence of
Operations 610 or Instruction Sets 600 which the users of the
group may perform or have perform most often, and more.
Group Specific Info 534 may further include the information
along with a time stamp for each Operation 610 or Instruc-
tion Set 600 which the users of the group have performed in
the past, thereby allowing the system to determine which
Operations 610 or Instruction Sets 600 the users of the group
have most recently been using and which Operations 610 or
Instruction Sets 600 the user have not used in a while.

Referring now to Acquisition and Modification Interface
110, Application Modification Unit 112 may be an element
of Acquisition and Modification Interface 110 as previously
described. Application Modification Unit 112 comprises the
functionality for modifying execution and/or functionality
of Software Application 120, and/or other functionalities.
Application Modification Unit 112 comprises the function-
ality for modifying execution and/or functionality of Soft-
ware Application 120 during Software Application’s 120
execution (i.e. runtime, etc.). Application Modification Unit
112 comprises the functionality for modifying execution
and/or functionality of Software Application 120 based on
UAIE {functionalities. Application Modification Unit 112
comprises the functionality for modifying execution and/or
functionality of Software Application 120 based on Artificial
Intelligence Unit’s 130 anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.). Appli-
cation Modification Unit 112 may include any functionality
to access, create, delete, modify, and/or perform other
manipulations on source code, bytecode, compiled, inter-
preted, or otherwise translated code, machine code, and/or
other code. Application Modification Unit 112 may include
any functionality to access, modify, and/or perform other
manipulations on runtime engine/environment, virtual
machine, operating system, compiler, just-in-time (JIT)
compiler, interpreter, translator, execution stack, program
counter, memory, processor registers, files, repositories,
objects, data structures, variables, parameters, functions,
methods, procedures, routines, subroutines, and/or other
computing system elements.

Various techniques can be utilized to modify execution
and/or functionality of Software Application 120 depending

US 9,443,192 Bl

109

on embodiments. One of ordinary skill in art will understand
that, while all these techniques are too voluminous to list, all
of these techniques are within the scope of this disclosure in
various implementations of the functionalities described
herein. Various platforms and/or computing systems may
provide native tools for modifying execution and/or func-
tionality of an application. Independent software vendors
may provide tools with similar functionalities that can be
utilized across different platforms. These tools enable a wide
range of techniques or capabilities for modifying execution
and/or functionality of an application such as, for example,
self-modifying code capabilities, dynamic code capabilities,
branching, code rewriting, code overwriting, instrumenta-
tion, hot swapping, and/or other capabilities. Additionally,
previously described tools and/or techniques can be utilized
for modification of execution and/or functionality of an
application. Code instrumentation, for example, may
involve inserting additional code, overwriting or rewriting
existing code, and/or branching to a separate segment of
code (i.e. function, routine/subroutine, method, etc.) as
previously described. For example, code instrumentation
may include the following:

loadPage(“http://www.youtube.com”,
tabs.activeTab);

modify Application();

In the above sample code, instrumented call to Application
Modification Unit’s 112 function (i.e. modifyApplication,
etc.) can be placed after the web page loading function (i.e.
loadPage, etc.) of an application such as web browser, for
example. Similar call to application modifying function can
be placed after or before some or all functions/routines/
subroutines, some or all lines of code, some or all state-
ments, some or all instructions or instruction sets, some or
all basic blocks, and/or some or all other code segments of
web browser or other application. One or more application
modifying function calls can be placed anywhere in the
application’s code and can be executed at any points in the
application’s execution. The application modifying function
(i.e. modifyApplication, etc.) may include UAIE determined
anticipatory instructions (i.e. anticipatory Instruction Sets
600 or Operations 610, etc.) that can modify the application
(i.e. web browser in this example, etc.) to which UAIE is
attached. In some embodiments, previously described
obtaining Software Application’s 120 instructions, data,
and/or other information as well as modifying execution
and/or functionality of Software Application 120 can be
implemented in a single function that performs both tasks
(i.e. traceAndModifyApplication, etc.). In some aspects,
modifying execution and/or functionality of an application
may include adding, modifying, removing, rewriting or
overwriting application code in memory at runtime. In other
aspects, modifying execution and/or functionality of an
application may include reflection, which comprises ability
to examine and modify the structure and behavior of an
application or object at runtime.

In one example, modifying execution and/or functionality
of an application can be implemented through utilizing
metaprogramming techniques, which include applications
that can self-modify or that can create, modify, and/or
manipulate other applications. Self-modifying code,
dynamic code, reflection, and/or other techniques can be
used to facilitate metaprogramming. In some aspects,
metaprogramming is facilitated through a programming
language’s ability to access and manipulate the internals of
the runtime engine directly or via an API. In other aspects,
metaprogramming is facilitated through dynamic execution
of expressions (i.e. anticipatory instructions from Artificial

activeWindow.

10

15

20

25

30

35

40

45

50

55

60

65

110

Intelligence Unit 130, etc.) that can be created and/or
executed at runtime. In yet other aspects, metaprogramming
is facilitated through application modification tools, which
can perform any modification on an application regardless of
whether the application’s programming language enables
any metaprogramming capabilities. Some operating systems
may protect an application loaded into memory by restrict-
ing access to the loaded application. This protection mecha-
nism can be circumvented by utilizing operating system’s,
processor’s, and/or other low level computing device com-
ponent’s features or commands to unprotect the loaded
application. For example, a self-modifying application may
need to modify the in-memory image of itself. To do so, the
application can obtain the in-memory address of its code.
The application may then change the operating system’s or
platform’s protection on this memory range allowing it to
modify the code (i.e. insert anticipatory instructions from
Artificial Intelligence Unit 130, etc.). Linux mprotect com-
mand can be used to change protection (i.e. unprotect, etc.)
for a region of memory, for example. Other platforms, tools,
and/or techniques may provide equivalent or similar func-
tionalities as the above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
native capabilities of dynamic, interpreted, and/or scripting
programming languages and/or platforms. Most of these
languages and/or platforms can perform functionalities at
runtime that static programming languages may perform
during compilation. Dynamic, interpreted, and/or scripting
languages provide native functionalities such as self-modi-
fication of code, dynamic code, extending the application,
adding new code, extending objects and definitions, modi-
fying the type system, and/or other functionalities that can
modify an application’s execution and/or functionality at
runtime. Examples of dynamic, interpreted, and/or scripting
languages include Lisp, Perl, PHP, JavaScript, Ruby,
Python, Smalltalk, Tcl, VBScript, and/or others. Similar
functionalities can also be provided in languages such as
Java, C, and/or others using reflection. Reflection includes
the ability of an application to examine and modify the
structure and behavior of the application at runtime. For
example, JavaScript can modify its own code as it runs by
utilizing Function object constructor as follows:

myFunc=new Function(argl, arg2, argN, functionBody);
Sample code above causes a new function object to be
created with the specified arguments and body. The body
and/or arguments of the new function object may include
anticipatory instructions (i.e. anticipatory Operations 610 or
Instruction Sets 600) from Artificial intelligence Unit 130.
The new function can be invoked as any other function in the
original code. In another example, JavaScript can utilize
eval method that accepts a string of JavaScript statements
(i.e. anticipatory instructions from Artificial Intelligence
Unit 130, etc.) and execute them as if they were within the
original code. An example of how eval method can be used
to implement the disclosed functionalities includes the fol-
lowing JavaScript code:

anticipatorylnstructions="window.open(“http://www.cnn.
com”,“_blank™);’;
(anticipatorylnstructions!="*"
anticipatorylnstructions!=null)

if &&

eval(anticipatorylnstructions);

In the sample code above, Artificial Intelligence Unit 130
may generate anticipatory instructions (i.e. instructions for
opening a URL http://www.cnn.com in a new tab or window,

US 9,443,192 Bl

111

etc.) and save them in anticipatorylnstructions variable,
which eval method may then execute. Lisp is another
example of dynamic, interpreted, and/or scripting language
that includes similar capabilities as previously described
JavaScript. For example, Lisp’s compile command can
create a function at runtime, eval command may parse and
evaluate an expression at runtime (similar to previously
described JavaScript eval), and exec command may execute
a given instruction (i.e. string, etc.) at runtime. In another
example, dynamic as well as some non-dynamic languages
may provide macros, which combine code introspection
and/or eval capabilities. In some aspects, macros can access
inner workings of the compiler, interpreter, virtual machine,
runtime environment/engine, and/or other components of
the computing platform enabling the definition of language-
like constructs and/or generation of sections of or complete
programs. Other platforms, tools, and/or techniques may
provide equivalent or similar functionalities as the above
described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
dynamic code, dynamic class loading, reflection, and/or
other native functionalities of a programming language or
platform. In static applications or static programming, a
class can be defined and/or loaded at compile time, Con-
versely, in dynamic applications or dynamic programming,
a class can be loaded into a running environment at runtime.
For example, Java Runtime Environment (JRE) may not
require that all classes be loaded at compile time and class
loading can occur when a class is first referenced at runtime.
Dynamic class loading enables inclusion or injection of
on-demand software components and/or functionalities at
runtime. System provided or custom class loaders may
enable loading of classes into the running environment.
Custom class loaders can be defined to enable custom
functionalities such as, for example, specifying a remote
location from which a class is loaded. In addition to dynamic
loading of a pre-defined class, a class can also be created at
runtime. In some aspects, a class source code can be created
at runtime. A compiler such as javac, com.sun.tools javac-
.Main, javax.tools, javax.tools.JavaCompiler, and/or other
packages can then be utilized to compile the source code.
Javac, com.sun.tools.javac.Main, javax.tools, javax.tools.Ja-
vaCompiler, and/or other packages may include an interface
to invoke Java compiler from within running applications. A
Java compiler may accept source code in a file, string, object
(i.e. Java String, StringBuffer, CharSequence, etc.) and/or
other source, and may generate bytecode (i.e. class file, etc.)
conforming to Java Virtual Machine specification. Once
compiled, a class loader can then load the compiled class
into the running environment. In other aspects, a tool such
as Javaassist (i.e. Java programming assistant) can be uti-
lized to enable an application to create or modify a class at
runtime. Javassist may include a Java library that provides
functionalities to create and/or manipulate Java bytecode of
an application and provides reflection capabilities. Javassist
may provide source-level and bytecode-level APIs. Using
the source-level API, a class can be created and/or modified
using only source code, which Javassist may compile seam-
lessly on the fly. Javassist source-level API can therefore be
used without knowledge of Java bytecode specification.
Bytecode-level API enables creating and/or editing a class
bytecode directly. In yet other aspects, similar functionalities
to the above described ones may be provided in tools such
as Apache Commons BCEL (Byte Code Engineering
Library), ObjectWeb ASM, CGLIB (Byte Code Generation
Library), and/or others. Once a dynamic code or class is

25

40

45

112

created and loaded, reflection in high-level programming
languages such as Java and/or others can be used to manipu-
late or change the runtime behavior of an application.
Examples of reflective programming languages and/or plat-
forms include Java, JavaScript, Smalltalk, Lisp,
Python, NET Common Language Runtime (CLR), Tcl,
Ruby, Perl, PHP, Scheme, PL/SQL, and/or others. Reflection
can be used in an application to access, examine, modify,
and/or manipulate a loaded class and/or its elements. Reflec-
tion in Java can be implemented by utilizing a reflection API
such as java.lang.Reflect package. The reflection API pro-
vides functionalities such as, for example, loading or reload-
ing a class, instantiating a new instance of a class, deter-
mining class and instance methods, invoking class and
instance methods, accessing and manipulating a class, fields,
methods and constructors, determining the modifiers for
fields, methods, classes, and interfaces, and/or other func-
tionalities. The above described dynamic code, dynamic
class loading, reflection, and/or other functionalities are
similarly provided in the .NET platform through its tools
such as, for example, System.CodeDom.Compiler
namespace, System.Reflection.Emit namespace, and/or
other native or other NET tools. Other platforms in addition
to Java and .NET may provide similar tools and/or func-
tionalities. Dynamic code, dynamic class loading, reflection,
and/or other functionalities can be used to facilitate the
disclosed functionalities by inserting or injecting anticipa-
tory instructions (i.e. anticipatory Operations 610 or instruc-
tion Sets 600) from Artificial Intelligence Unit 130 into a
running application. For example, an existing or dynami-
cally created class comprising UAIE functionalities can be
loaded into a running application through manual, auto-
matic, or dynamic instrumentation. Once the class is created
and loaded, an instance of UAIE class may be constructed.
The instance of UAIE can then take or exert control of the
application and/or implement anticipatory instructions (i.e.
anticipatory Operations 610 or Instruction Sets 600) from
Artificial Intelligence Unit 130 at any point in the applica-
tion’s execution. Other platforms, tools, and/or techniques
may provide equivalent or similar functionalities as the
above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
independent tools that can be utilized across different plat-
forms. Many tools exist that provide instrumentation and/or
other capabilities on more than one platform or computing
system, which may enable application modification or inser-
tion of instructions such as anticipatory instructions (i.e.
anticipatory Operations 610 or Instruction Sets 600) from
Artificial intelligence Unit 130. Examples of these tools
include Pin, DynamoRIO, Dynlnst, Kprobes, Kernlnst,
OpenPAT, DTrace, SystemTap, and/or others. In some
aspects, Pin and/or any of its systems, methods, and/or
techniques can be utilized for dynamic instrumentation. Pin
can perform instrumentation by taking control of an appli-
cation after it loads into memory. Pin may insert itself into
the address space of an executing application, enabling it to
take control. Pin JIT compiler can then compile and imple-
ment alternate code such as anticipatory instructions (i.e.
anticipatory Operations 610 or Instruction Sets 600) from
Artificial intelligence Unit 130. Pin provides an extensive
API for instrumentation at many abstraction levels. Pin
supports two modes of instrumentation, JIT mode and probe
mode. JIT mode uses a just-in-time compiler to recompile
program code and insert instrumentation while probe mode
uses code trampolines for instrumentation. Pin was designed
for architecture and operating system independence. In other
aspects, Kernlnst and/or any of its systems, methods, and/or

US 9,443,192 Bl

113

techniques can be utilized for dynamic instrumentation.
Kernlnst may include an instrumentation framework
designed for dynamically inserting code into a running
kernel (i.e. operating system kernel, etc.). Kernlnst imple-
ments probe-based dynamic instrumentation where code can
be inserted, changed, and/or removed at will. Kernlnst API
enables client tools to construct their own tools for dynamic
kernel instrumentation to suit variety of purposes such as
insertion of anticipatory instructions (i.e. anticipatory
Operations 610 or Instruction Sets 600) from Artificial
Intelligence Unit 130. Client tools can also communicate
with Kernlnst over a network (i.e. internet, wireless net-
work, LAW, WAN;, etc). Other platforms, tools, and/or
techniques may provide equivalent or similar functionalities
as the above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
utilizing operating system’s native tools or capabilities such
as Unix ptrace command. Ptrace includes a system call that
may enable one process to control another allowing the
controller to inspect and manipulate the internal state of its
target. Ptrace can be used by specialized programs (i.e.
UALIE, etc.) to modify running applications such as modi-
fying an application with anticipatory instructions (i.e.
anticipatory Operations 610 or Instruction Sets 600) from
Artificial Intelligence Unit’s 130. By attaching to an appli-
cation using the ptrace call, the controlling program can gain
extensive control over the operation of its target. This may
include manipulation of its instructions, execution path, file
descriptors, memory, registers, and/or other components.
Ptrace can single-step through the target’s code, observe and
intercept system calls and their results, manipulate the
target’s signal handlers, receive and send signals on the
target’s behalf, and/or perform other operations within the
target application. Ptrace’s ability to write into the target
application’s memory space enables the controller to modify
the running code of the target application. Other platforms,
tools, and/or techniques may provide equivalent or similar
functionalities as the above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
utilizing just-in-time (JIT) compiling. JIT compilation (also
known as dynamic translation, dynamic compilation, etc.)
includes compilation performed during an application’s
execution (i.e. runtime, etc.). A code can be compiled when
it is about to be executed, and it may be cached and reused
later without the need for additional compilation. In some
aspects, JIT compilers convert source code or byte code to
machine code. In other aspects, JIT compilers convert
source code to byte code or machine code. JIT compiling
may generally be performed directly in memory. For
example, JIT compiler can output machine code directly into
memory and immediately execute it. JIT compilation can be
performed per-file, per-function, or with an arbitrary code
segment. Platforms such as Java, .NET, and/or others may
implement JIT compilation as their native functionality.
Many platform independent tools for custom system design
include JIT compilation functionality as well. In some
aspects, JIT compilation includes redirecting application’s
execution to a JIT compiler from a specific entry point. For
example, one of the widely used tools, Pin, can insert its JIT
compiler into the address space of an application. Once
execution is redirected to it, JIT compiler may receive
alternate instructions such as anticipatory instructions (i.e.
anticipatory Operations 610 or Instruction Sets 600) from
Artificial Intelligence Unit 130 immediately before their
compilation (i.e. if they are not previously compiled). The

5

10

15

20

25

30

35

40

45

50

55

60

65

114

compiled instructions such as anticipatory instructions from
Artificial Intelligence Unit 130 can be stored in memory or
another repository from where they may be retrieved and
executed. Alternatively, for example, JIT compiler can cre-
ate a copy of the original application code or a segment
thereof, and insert (including modifying, rewriting, over-
writing, etc. of the original code) alternate code such as
anticipatory instructions (i.e. anticipatory Operations 610 or
Instruction Sets 600) from Artificial Intelligence Unit’s 130
before compiling the modified code copy. Since the modified
code copy can be stored and executed from a new location,
JIT compiler may modify the application’s control instruc-
tions to account for this change. Direct control instructions
may point directly to the modified code copy if its location
is known. Indirect control instructions such as indirect
branches, jumps, calls, return instructions, or others may
point to address in a register, memory location, or other
repository that may hold the location of the modified code.
In some embodiments, this address may only be known and
computed by the system at runtime. In some aspects, JIT
compiler includes a specialized memory such as fast cache
memory dedicated to JIT compiler functionalities from
which the modified code can be fetched rapidly. JIT com-
pilation and/or any compilation in general may include
compilation, interpretation, or other translation into machine
code, bytecode, and/or other formats or types of code. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
dynamic recompilation. Dynamic recompilation include
recompiling an application or a part thereof during execu-
tion. An application can be modified with alternate features
or instructions that may take effect after recompilation.
Dynamic recompilation may be practical in various types of
applications including object oriented, event driven, forms
based, graphical user interface (GUI), and/or other applica-
tions. In a typical windows-based application that includes
GUI, most of the action after initial startup occurs in
response to user or system events such as moving the mouse,
selecting a menu option, typing text, running a scheduled
task, making a network connection, and/or other events
when an event handler is called to perform an operation
appropriate for the event. Generally, when no events are
being generated, the program can be idle. For example,
when an event occurs and an appropriate event handler is
called, instrumentation can be implemented in the applica-
tion’s source code to insert (including modifying, rewriting,
overwriting, etc. of the source code) alternate instructions
such as anticipatory instructions (i.e. anticipatory Opera-
tions 610 or Instruction Sets 600) from Artificial Intelligence
Unit 130 at which point the modified source code can be
recompiled and/or executed. In some aspects, the state of the
application can be saved before recompiling its modified
source code so that the application may continue from its
prior state. Saving the application’s state can be achieved by
saving its variables, data structures, objects, location of its
current instruction, and/or other necessary information in
environmental variables, data structures, objects, or other
elements where they can be accessed once the application is
recompiled. In other aspects, application’s variables, data
structures, objects, address of its current instruction, and/or
other necessary information can be saved in a repository
such as file, database, or other repository accessible to the
application after recompilation of its source code. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

US 9,443,192 Bl

115

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
modifying or redirecting the application’s execution path.
Generally, an application can be loaded into memory and the
flow of execution proceeds from one statement or instruction
to the next until the end of the application. An application
may include a branching mechanism that can be driven by
keyboard or other input devices, system events, and/or other
computing device components or events that may impact the
execution path. The execution path can also be altered by an
external application through acquiring control of execution
and/or redirecting execution to a function, routine/subrou-
tine, or an alternate code segment at any point in the
application’s execution. A branch, jump, trampoline, trap, or
another similar mechanism can be utilized to implement the
redirected execution. For example, a jump instruction can be
inserted at a specific point in an application’s execution to
redirect execution to an alternate code segment. A jump
instruction may include, for example, an unconditional
branch, which always results in branching, or a conditional
branch, which may or may not result in branching depending
on a condition. When executing an application, a computer
may fetch and execute instructions in sequence until it
encounters a branch instruction. If the instruction is an
unconditional branch, or it is conditional and the condition
is satisfied, the computer may fetch its next instruction from
a different instruction sequence or code segment as specified
by the branch instruction. After the execution of the alternate
code segment, control may be redirected back to the original
jump point or to another point in the application. In some
aspects, the disclosed functionalities can be implemented by
redirecting the execution of an application to anticipatory
instructions (i.e. anticipatory Operations 610 or Instruction
Sets 600) from Artificial Intelligence Unit 130. Depending
on design, platform, programming language, and/or other
factors, anticipatory instructions can be pre-compiled, pre-
interpreted, or otherwise pre-translated and ready for execu-
tion. Anticipatory instructions can also be JIT compiled,
interpreted, or otherwise translated before execution. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In a furother example, modifying execution and/or func-
tionality of an application can be implemented through
assembly language. Assembly language instructions may be
directly related with the architecture’s machine instructions
as previously described. Assembly language can, therefore,
be a powerful tool for implementing direct hardware (i.e.
processor registers, memory, etc.) manipulations and access
to specialized processor features or instructions. Assembly
language can also be a powerful tool for implementing
low-level embedded systems, real-time systems, interrupt
handlers, self or dynamically modifying code, and/or other
applications. Specifically, self or dynamically modifying
code that can be used to facilitate the disclosed functional-
ities can be seamlessly implemented using assembly lan-
guage. For example, using assembly language, instructions
can be dynamically created and loaded into memory similar
to the ones that a compiler may generate. Furthermore, using
assembly language, memory space of a loaded application
can be accessed to modify (including rewriting, overwriting,
etc.) original instructions or to insert jumps or trampolines
to alternate code elsewhere in memory. Some operating
systems may implement protection from changes to appli-
cations loaded into memory. Operating system’s, proces-
sor’s, or other low level computing device component’s
features or commands can be used to unprotect the protected
locations in memory before the change as previously

5

10

15

20

25

30

40

45

50

55

60

65

116

described. Alternatively, a pointer that may reside in a
memory location where it could be readily altered can be
utilized where the pointer may reference alternate code. In
some aspects, assembly language can be utilized to write
anticipatory instructions (i.e. anticipatory Operations 610 or
Instruction Sets 600) from Artificial Intelligence Unit 130
into a location in memory outside a running application’s
memory space. Assembly language can then be utilized to
redirect the application’s execution to the alternate code (i.e.
anticipatory instructions, etc.) by inserting a jump or tram-
poline into the application’s in-memory code, by redirecting
program counter, or by other technique. In other aspects,
assembly language can be utilized to overwrite or rewrite the
entire or part of an application’s in-memory code with
alternate code (i.e. anticipatory instructions, etc.). In yet
other aspects, high-level programming languages can call an
external assembly language program to facilitate application
modification as previously described. In yet other aspects,
relatively low-level programming languages such as C may
allow embedding assembly language directly in their source
code such as, for example, using asm keyword of C. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

In a further example, modifying execution and/or func-
tionality of an application can be implemented through
binary rewriting. Binary rewriting tools and/or techniques
may modify an application’s executable. In some aspects,
modification can be minor such as in the case of optimiza-
tion where the original executable’s functionality is kept. In
other aspects, modification may change the application’s
functionality such as by inserting anticipatory instructions
(i.e. anticipatory Operations 610 or Instruction Sets 600)
from Artificial Intelligence Unit 130. Examples of binary
rewriting tools include SecondWrite, ATOM, DynamoRIO,
Purify, Pin, EEL, Dynlnst, PLTO, and/or others. Binary
rewriting may include disassembly, analysis, and/or modi-
fication of target application. Since binary rewriting works
directly on machine code executable, it is independent of
source language, compiler, virtual machine (if one is uti-
lized), and/or other higher level abstraction layers. Also,
binary rewriting tools can perform application modifications
without access to original source code. Binary rewriting
tools include static rewriters, dynamic rewriters, minimally-
invasive rewriters, and/or others. Static binary rewriters can
modify an executable when the executable is not in use (i.e.
not running). The rewritten executable may then be executed
including any new or modified functionality. Dynamic
binary rewriters can modify an executable during its execu-
tion, therefore, modifying an application’s functionality at
runtime. In some aspects, dynamic rewriters can be used for
instrumentation or selective application modifications such
as insertion of anticipatory instructions (i.e. anticipatory
Operations 610 or Instruction Sets 600) from Artificial
Intelligence Unit 130, and/or for other runtime transforma-
tions or modifications. For example, some dynamic rewriters
can be configured to intercept an application’s execution at
indirect control transfers and insert instrumentation or other
application modifying code. Minimally-invasive rewriters
may keep the original machine code to the greatest extent
possible. They support limited modifications such as inser-
tion of jumps into and out of instrumentation code. Other
platforms, tools, and/or techniques may provide equivalent
or similar functionalities as the above described ones.

Referring to FIG. 21, in yet another example, modifying
execution and/or functionality of an application can be
implemented through modification of instructions or data in
processor registers, memory, or other computing device

US 9,443,192 Bl

117

components where an application’s instructions, data, and/or
other information may be stored or used. Such modification
can be implemented in software, a combination of software
and hardware, or purely hardware system. In some aspects,
the disclosed functionalities can be implemented by redi-
recting the execution of an application to Artificial Intelli-
gence Unit’s 130 anticipatory instructions (i.e. anticipatory
Operations 610 or Instruction Sets 600). In one example,
Program Counter 211 may hold or point to the memory
address of Software Application’s 120 next instruction that
will be executed. Artificial Intelligence Unit 130 may gen-
erate anticipatory instructions (i.e. anticipatory Operations
610 or Instruction Sets 600) as previously described and
they can be stored in Memory 12. Application Modification
Unit 112 may then change Program Counter 211 to point to
the location in Memory 12 where anticipatory instructions
are stored. The anticipatory instructions can then be fetched
from location in Memory 12 pointed to by the modified
Program Counter 211 and loaded into Instruction Register
212 for decoding and execution as previously described.
Once anticipatory instructions are executed, Application
Modification Unit 112 may change Program Counter 211 to
point to the last (or subsequent) Software Application’s 120
instruction before the redirection or any other Software
Application’s 120 instruction. In other aspects, anticipatory
instructions (i.e. anticipatory Operations 610 or instruction
Sets 600) can be loaded directly into Instruction Register
212 (i.e. after issuing an interrupt, etc.) if the computing
architecture allows for such loading. As previously
described, examples of other computing device or processor
components that can be used during an instruction cycle
include memory address register (MAR), memory data
register (MDR), data registers, address registers, general
purpose registers (GPRs), conditional registers, floating
point registers (FPRs), constant registers, special purpose
registers, machine-specific registers, Register Array 214,
Arithmetic Logic Unit 215, control unit, and/or other circuits
or components. Any of the described processor registers,
memory, or other computing device components can be
accessed and/or modified during an application’s execution
to facilitate the functionalities described herein. In some
aspects, processor interrupt may be issued after which
arbitrary manipulations of processor registers, memory, and/
or other components can be performed to modify an appli-
cation’s functionality such as execution of anticipatory
instructions (i.e. anticipatory Operations 610 or Instruction
Sets 600) from Artificial Intelligence Unit 130. In other
aspects, the disclosed devices, apparatuses, systems, and/or
methods can be implemented in dedicated hardware that
may send an interrupt signal to processor and that can
perform arbitrary manipulations of processor registers,
memory, and/or other components to modify an applica-
tion’s functionality. A hardware solution can be imple-
mented with marginal or no impact to computing overhead.
Other platforms, tools, and/or techniques may provide
equivalent or similar functionalities as the above described
ones.

Another example of modifying execution and/or function-
ality of an application includes the use of delegates, and/or
other similar techniques. In some aspects, using a delegate
may enable referencing one or more methods inside a
delegate object. The delegate object can then be passed to
code which may call the referenced methods without having
to know which methods may be invoked at compile time.

Other additional techniques or elements can be utilized as
needed for modifying execution and/or functionality of an

10

15

20

25

30

35

40

45

50

55

60

65

118

application, or some of the disclosed techniques or elements
can be excluded, or a combination thereof can be utilized in
alternate embodiments.

Referring to FIG. 22, an embodiment is illustrated in
which Software Application 120 executes on User’s 50
Computing Device 70 and UAIE executes on a Remote
Computing Device 1310. Remote Computing Device 1310
can be any computing device remote from Computing
Device 70, such as a remote computer, a remote server,
another Computing Device 70, or another similar type of
remote computing device to which Computing Device 70
may connect over Network 1300. One of ordinary skill in art
will recognize that Remote Computing Device 1310 may
include any functionalities and/or elements of Computing
Device 70, including any memory, processing, and/or other
elements. One of ordinary skill in art will also recognize that
User’s 50 Computing Device 70 can connect to Remote
Computing Device 1310 over Network 1300 which may
include various networks, connection types, protocols, inter-
faces, APIs, and/or other mechanisms or techniques all of
which are within the scope of this disclosure. In some
aspects, the connection with Software Application 120 can
be implemented through a networking interface, API, or
capabilities of the platform (i.e. Java or NET networking
interface or API, etc.) or the operating system on which
Software Application 120 runs. In other aspects, the con-
nection with Software Application 120 can be implemented
through networking capabilities of the previously described
tools (i.e. JVMTI, Pin, DynamoRIO, Kernlnst, Dynlnst,
Kprobes, OpenPAT, DTrace, SystemTap, assembly lan-
guage, hardware components, etc.) used to implement
Acquisition and Modification Interface 110 functionalities.
In yet other aspects, the connection with Software Applica-
tion 120 can be implemented through custom-built interface
or capabilities specifically designed to facilitate functional-
ities described herein. Any of the previously described
network or connection types, networking interfaces, and/or
other networking elements or techniques can similarly be
utilized.

Referring to FIG. 23, an embodiment is illustrated in
which UAIE executes on User’s 50 Computing Device 70
and Software Application 120 executes on a Remote Com-
puting Device 1310 where User’s 50 Computing Device 70
may connect to Remote Computing Device 1310 over
Network 1300.

Referring to FIG. 24, an embodiment is illustrated in
which Software Application 120 includes Acquisition and
Modification Interface 110 and/or Artificial Intelligence Unit
130. In such integrated implementation, Artificial Intelli-
gence Unit 130 may directly access internal functions,
processes, libraries, files, objects, data structures, and/or
other elements of Software Application 120. Acquisition and
Modification Interface 110 and/or any of its functionalities
or elements may optionally be omitted in such integrated
implementations.

Referring to FIG. 25, an embodiment is illustrated in
which UAIE includes Software Application 120. In such
integrated implementations, Software Application 120 may
be custom-built for a specific artificial intelligence applica-
tion. Acquisition and Modification Interface 110 and/or any
of'its functionalities or elements can optionally be omitted in
such integrated implementations.

Referring to FIG. 26, an embodiment is illustrated in
which Knowledgebase 530 (i.e. remote Knowledgebase
530) resides on a Remote Computing Device 1310 (i.e.
application server, cloud, etc.) accessible via Network 1300
(i.e. corporate enterprise network, Internet, etc.). Such

US 9,443,192 Bl

119

remote Knowledgebase 530 may include knowledge (i.e.
Operations 610 or Instruction Sets 600, Knowledge Cells
800, etc.) of operation of one or more Software Applications
120 from any number of computing devices wherever on the
Network 1300 they are located. In turn, users of any com-
puting devices can utilize the remote Knowledgebase 530 to
enable autonomous operation of their Software Applications
120. Remote Knowledgebase 530 may include a global
Knowledgebase 530. In some aspects, a global Knowledge-
base 530 resides on a Remote Computing Device 1310 on
the Internet available to all the world’s computing devices
configured to transmit operations of their Software Appli-
cations 120 and/or configured to utilize the global Knowl-
edgebase 530 to automate their Software Applications’ 120
operations. The global Knowledgebase 530 can be offered as
a network service (i.e. online application, etc.) in some
implementations. In other aspects, knowledge (i.e. Opera-
tions 610 or Instruction Sets 600, Knowledge Cells 800, etc.)
of Software Application’s 120 operation from various com-
puting devices can be loaded into a local Knowledgebase
530 (i.e. Knowledgebase 530 stored on user’s Computing
Device 70, etc.) to make the knowledge immediately avail-
able and/or to speed up UAIE’s learning process. The
various computing devices may include computing devices
of various different users. In further aspects, a knowledge-
base from another computing device can be loaded into
UAIE. Remote Knowledgebase 530 may include or be
replaced with remote Neural Network 850 (later described)
and/or other repository for storing Software Application’s
120 operation. Therefore, Neural Network 850 and/or other
repository comprises all features, functionalities, and
embodiments of remote Knowledgebase 530.

Referring to FIG. 27, an embodiment is illustrated in
which UAIE including Artificial Intelligence Unit 130 (i.e.
remote UAIE or Artificial Intelligence Unit 130) resides
and/or executes on a Remote Computing Device 1310 (i.e.
application server, cloud, etc.). In such implementations,
Acquisition and Modification Interface 110 executing on
Computing Device 70 may connect to UAIE and/or Artifi-
cial intelligence Unit 130 via Network 1300.

Various other embodiments including other additional
elements, or excluding some of the disclosed elements, or
implementing a combination of elements are within the
scope of this disclosure.

Referring to FIG. 28, the illustration shows an embodi-
ment of a method 6100 for autonomous application operat-
ing based on UAIE functionalities (i.e. learning, anticipat-
ing, etc.). The method can therefore be used on a computing
device to enable autonomous operation of the application
with partial, minimal, or no user input. In some embodi-
ments, the method can be used on a computing device
operating an interface for UAIE that enables autonomous
operation of the application with partial, minimal, or no user
input. Method 6100 may include any action or operation of
any of the disclosed methods such as, for example, methods
6200, 6300, 6400, and/or others. Other additional steps,
actions, or operations can be included as needed, or some of
the disclosed ones can be optionally omitted, or a different
order thereof can be implemented in alternate embodiments
of method 6100.

At step 6105, a first instruction set and a second instruc-
tion set are received, the first and the second instruction sets
for performing operations on a computing device. The first
instruction set may be followed by the second instruction
set, which may be followed by a third instruction set, and so
on. The first, the second, and/or any other instruction sets
can also be received in different orders other than a sequen-

40

45

50

60

120

tial order or one instruction set followed by another. An
instruction set (i.e. Instruction Set 600, etc.) may be part of
an application (i.e. Software Application 120, etc.) for
performing operations on a computing device (i.e. Comput-
ing Device 70, etc.). The application can run or execute on
one or more processors (i.e. Processors 11, etc.) or other
processing devices. The first, the second, and/or other
instruction sets and/or their portions can be part of a list (i.e.
Operation List 510, etc.) of recently executed instruction
sets. In some aspects, the list of recently executed instruction
sets comprises instruction sets executed immediately prior to
and including a currently executed instruction set. In other
aspects, the list of recently executed instruction sets com-
prises instruction sets executed immediately prior to, but not
including a currently executed instruction set. In further
aspects, the list of recently executed instruction sets com-
prises any instruction sets executed prior to a currently
executed instruction set. In further aspects, the list of
recently executed instruction sets comprises any instruction
sets executed at any time points. A plurality of lists of
recently executed instruction sets can be received at various
time points depending on where the application is in its
operation. Therefore a list of recently executed instruction
sets may correspond to a specific time point or stage in the
application’s operation. An instruction set may include one
or more commands, keywords, symbols (i.e. parentheses,
braces, commas, semicolons, etc.), instructions, operators
(i.e. = <, >, etc.), variables, values, objects (i.e. file, table,
network connection, game player, etc.), functions (i.e. Func-
tionl, FIRST(), MIN(), MAX(), SQRT(), etc.), param-
eters, references thereto, and/or other components for per-
forming an operation on a computing device. An instruction
set may include source code, bytecode, intermediate code,
compiled, interpreted, or otherwise translated code, runtime
code, assembly code, machine code, and/or any other com-
puter code. An instruction set can be compiled, interpreted
or otherwise translated into machine code or any interme-
diate code (i.e. bytecode, assembly code, etc.). An instruc-
tion set can be received from memory (i.e. Memory 12, etc.),
hard drive, or any other storage element or repository. An
instruction set can be received over a network such as
Internet, local area network, wireless network, and/or other
network. An instruction set can also be received by an
interface (i.e. Acquisition and Modification Interface 110,
etc.) for UAIE operating on a computing device. An instruc-
tion set can be received by or from a computing device (i.e.
Computing Device 70, etc.), or by any other computing
device in general. An instruction set can be received by any
element of the UAIE system. Receiving comprises any
action or operation by or for an Acquisition and Modifica-
tion Interface 110, and/or other disclosed elements.

At step 6110, the first and the second instruction sets are
disassembled into instruction set portions. An instruction set
portion (i.e. instruction Set Portion 620, etc.) may include a
command, keyword, symbol, instruction, operator, variable,
value, object, function, parameter, reference thereto, and/or
other component of an instruction set. Disassembling may
also include a more detailed disassembling where some or
all characters, digits, symbols, and/or other detailed ele-
ments of an instruction set are captured in instruction set
portions. Disassembling may include identifying one or
more instruction set portions. Disassembling may include
identifying the type of instruction set. Disassembling may
include recording any extra information (i.e. Extra info 630,
etc.) pertinent for facilitating UAIE functionalities. Extra
information comprises contextual information such as time
stamp or other time information, geo-spatial information,

US 9,443,192 Bl

121

environmental information, observed information, com-
puted information, analyzed information, inferred informa-
tion, and/or other information. Time stamp, for example, can
indicate the time when an instruction set has been received
or executed. Disassembling may also include storing
instruction set portions of an instruction set and/or any
related extra information in a data structure such as Opera-
tion 610, or in any other data structure or repository.
Disassembling may further include identifying a user which
entered or executed an instruction set or identifying a group
to which the user belongs. Disassembling may also include
assigning or associating an importance index (i.e. Impor-
tance Index 640, etc.) or weight to one or more instruction
sets or their portions. In some aspects, disassembling can
optionally be disabled or omitted in which case the first and
the second instructions sets can be stored in knowledgebase.
Disassembling comprises any action or operation by or for
a Command Disassembler 500, Knowledge Structuring Unit
520, and/or other disclosed elements.

At step 6115, the first and the second instruction sets, or
at least one of their portions, are stored into a knowledge-
base comprising a plurality of instruction sets or their
portions. Knowledgebase (i.e. Knowledgebase 530, etc.)
comprises any number of instruction sets and/or their por-
tions, which can be stored in various arrangements including
data structures, objects, files, tables, databases. DBMSs,
memory structures, and/or other computer repositories. In
some implementations, the first and the second instruction
sets, or at least one of their portions, can be stored in the
knowledgebase so that the first instruction set or at least one
of'its portions is followed by the second instruction set or at
least one of its portions. In other aspects, no such arrange-
ment or relationship between the first and the second instruc-
tion sets, or at least one of their portions, is required, and the
first and the second instruction sets, or at least one of their
portions, can be stored in any other arrangement in the
knowledgebase. In further aspects, knowledgebase includes
a number of knowledge cells where each knowledge cell
(i.e. Knowledge Cell 800, etc.) comprises a number of
instruction sets and/or their corresponding portions. In fur-
ther aspects, knowledgebase includes a number of instruc-
tion set sequences. For example, a knowledge cell comprises
a sequence of instruction sets or their portions in some
designs. In further aspects, knowledgebase includes a single
long knowledge cell comprising all instruction sets and/or
their corresponding portions ever executed, or executed in a
specific time period (i.e. month, year, etc.). In further
aspects, knowledgebase includes one or more long knowl-
edge cells. In some aspects, an instruction set and/or its
portions can be stored in a list (i.e. Operation List 510, etc.)
of recently executed instruction sets that can be used for
knowledge cell creation or any other knowledge structuring.
In one example, a knowledge cell includes a number of
instruction sets and/or their portions. In another example, a
knowledge cell includes a number of Operations 610 each
comprising an instruction set and/or its portions. In some
aspects, the most recent instruction sets (i.e. the second
instruction set, etc.) from the list of recently executed
instruction sets may become anticipatory instruction sets in
the corresponding knowledge cell, whereas, the least recent
instruction sets (i.e. the first instruction set, etc.) from the list
of recently executed instruction sets may become compara-
tive instruction sets in the corresponding knowledge cell.
Instruction sets and/or their portions can be compiled, inter-
preted, or otherwise translated into machine code or inter-
mediate code (i.e. bytecode, assembly code, etc.). The
compiled, interpreted, or otherwise translated code can be

20

40

45

55

122

associated with the original instruction sets and/or their
portions and stored in knowledgebase. In some embodi-
ments, knowledgebase includes instruction sets and/or their
portions from a computing device (i.e. Computing Device
70, etc.) from or on which the instruction sets and/or their
portions are received or executed. In other embodiments,
knowledgebase includes instruction sets and/or their por-
tions from any number of computing devices. Knowledge-
base or additional knowledgebases can also be populated to
include user specific and/or group specific information gath-
ered with respect to the instruction set. Also stored in
knowledgebase may be the importance index (i.e. Impor-
tance Index 640, etc.) or weight assigned to or associated
with an instruction set and/or its portions. Any of the
disclosed storing of instruction sets and/or their portions can
also be implemented for storing any related extra informa-
tion into the knowledgebase, or other data structures or
repositories. Knowledgebase may include or be replaced
with various artificial intelligence methods, systems, and/or
models for knowledge structuring, storing, and/or represen-
tation such as deep learning, supervised learning, unsuper-
vised learning, neural networks (i.e. Neural Network 850,
convolutional neural network, recurrent neural network,
etc.), search-based, optimization-based, logic and/or fuzzy
logic-based, tree/graph/other data structure-based, hierarchi-
cal, symbolic and/or sub-symbolic, evolutionary, genetic,
multi-agent, any deterministic, probabilistic, statistical, and/
or other methods, systems, and/or models. Storing com-
prises any action or operation by or for a Knowledgebase
530, Knowledge Cell 800, Operation List 510, Knowledge
Structuring Unit 520, and/or other disclosed elements.

At step 6120, a new instruction set for performing an
operation on the computing device is received. Step 6120
may include any action or operation described in Step 6105
as applicable.

At step 6125, the new instruction set is disassembled into
instruction set portions. Step 6125 may include any action or
operation described in Step 6110 as applicable.

At step 6130, at least one portion of the new instruction
set are compared with at least one portion of the first
instruction set from the knowledgebase. The at least one
portion of the new instruction set can be compared as a
single string of characters with at least one portion of the
first instruction set in the knowledgebase. Comparison can
also be implemented by treating each instruction set portion
as a separate string to be matched independently. Instruction
set portions comprising numeric values can be compared as
numbers, wherein a tolerance or threshold can be utilized in
determining a match. The first instruction set may be one of
plurality of instruction sets stored in the knowledgebase
whose portions can be compared with portions of the new
instruction set. Comparison can be implemented by match-
ing all portions of the new instruction set with all portions
of an instruction set stored in a knowledgebase. Comparison
can also be implemented by matching all but one portion of
the new instruction set with all but one portion of an
instruction set stored in the knowledgebase. Comparison can
also be implemented by matching all but two or more (i.e.
any threshold number can be used, etc.) portions of the new
instruction set with all but two or more portions of an
instruction set stored in the knowledgebase. In some aspects,
comparison can be implemented by comparing one or more
portions of the new instruction set with one or more portions
of the instruction sets from the knowledgebase, factoring in
an importance index (i.e. Importance Index 640, etc.) or
weight for each of the instruction set portions. As such,
matching some portions of the new instruction set or the

US 9,443,192 Bl

123

instruction set from the knowledgebase may be more impor-
tant than other portions having smaller importance or
weight. In other aspects, comparison may include semantic
analysis that accounts for semantically equivalent variations
of instruction set portions. For example, a number of most
recently used or executed instruction sets (i.e. new instruc-
tion set, etc.) and/or their portions from a list (i.e. Operation
List 510, etc.) of recently executed instruction sets can be
compared (i.e. Substantial Similarity Comparison 1010,
etc.) with comparative instruction Sets (i.e. first instruction
set, etc.) and/or their portions from a knowledge cell in the
knowledgebase. If a substantially similar pattern of most
recently used or executed instruction sets from the list of
recently executed instruction sets is found in comparative
instruction sets of a knowledge cell (i.e. Substantially Simi-
lar Knowledge Cell 1110, etc.), subsequent instruction sets
can be anticipated in anticipatory instruction sets (i.e. second
instruction set, etc.) of the knowledge cell. Any of the
disclosed comparing of instruction sets or their portions can
similarly be implemented for comparing any related extra
(i.e. Extra Information 630, etc.) or contextual information.
Comparing comprises any action or operation by or for a
Substantial Similarity Comparison 1010, Comparison Strict-
ness Function 1011, Decision Making Unit 540, and/or other
disclosed elements.

At step 6135, a determination is made that there is a
substantial similarity between the new instruction set and the
first instruction set from the knowledgebase. During the
comparison of the at least one portion of the new instruction
set and the at least one portion of the first instruction set a
perfect match may be found. In some aspects, plurality of
perfect matches can be found between the new instruction
set and instruction sets stored in knowledgebase. If the
number of matches exceeds a threshold for maximum num-
ber of substantial similarity results, strictness used for deter-
mining a substantial similarity match can be increased to
include additional one or more instruction set portions in
order to narrow down or reduce the number of perfect
matching results. If no perfect match is found, or if the
number of matches is lower than a threshold for minimum
amount of substantially similar results, then strictness can be
reduced to allow for finding a match that is imperfect.
Strictness can be adjusted to allow for a match of more
important (as indicated by Importance Index 640 or other
importance ranking technique) instruction set portions. The
more important instruction set portions may include portions
comprising function names or command words. For
example, a substantial similarity match can be found when
function names or command words from the one or more
portions of the new instruction set match function names or
command words in one or more instruction sets in the
knowledgebase, even if one or more variable names or
values are not matched. Substantial similarity match can
also be found when all but one portion of the new instruction
set match all but one portion of an instruction set in the
knowledgebase. Similarly, a substantial similarity match
may be found when all but two or more (i.e. any threshold
number can be used, etc.) portions of the new instruction set
match all but two or more portions of an instruction set in the
knowledgebase. The one, two, or more non-matched instruc-
tion set portions may be portions having smaller or smallest
importance index (i.e. Importance Index 640, etc.) or
weight. In one example, the non-matched instruction set
portions may include variable names, values, or other
instruction set portions that may be less important than the
function names or commands. Determination of substantial
similarity between any instruction sets and/or their portions

25

30

40

45

50

55

124

may include any one of, or any combination of, substantial
similarity determination or decision making techniques or
embodiments discussed herein. In some aspects, determin-
ing and/or decision making may include various artificial
intelligence methods, systems, and/or models such as deep
learning, supervised learning, unsupervised learning, neural
networks (i.e. Neural Network 850, convolutional neural
network, recurrent neural network, etc.), search-based, opti-
mization-based, logic and/or fuzzy logic-based, tree/graph/
other data structure-based, hierarchical, symbolic and/or
sub-symbolic, evolutionary, genetic, multi-agent, any deter-
ministic, probabilistic, statistical, and/or other methods, sys-
tems, and/or models. Any of the disclosed determining of
substantial similarity with respect to instruction sets and/or
their portions can similarly be implemented with respect to
any related extra (i.e. Extra Information 630, etc.) or con-
textual information. Determining comprises any action or
operation by or for a Substantial Similarity Comparison
1010, Comparison Strictness Function 1011, Decision Mak-
ing Unit 540, Substantially Similar Knowledge Cell 1110,
and/or other disclosed elements.

At step 6140, the second instruction set from the knowl-
edgebase or at least one of its portions are modified based on
context analysis. Modifying the second instruction set from
the knowledgebase or at least one of its portions includes
modifying a copy of the second instruction set or at least one
of'its portions stored in the knowledgebase without changing
the stored second instruction set or at least one of its
portions. In some aspects, extra or contextual information
can be recorded in the processing or disassembling of an
instruction set, and stored along with its instruction set
portions in the knowledgebase. Extra or contextual infor-
mation may generally include time stamp or other time
information, geo-spatial information, environmental infor-
mation, observed information, computed information, ana-
lyzed information, inferred information, and/or other infor-
mation. In some embodiments, contextual information may
include time stamp, user specific information, group user
information, version of application, type of application (i.e.
web browser, computer game, word processing, database.
CAD/CAM software, etc.), type of computing device, type
of user (novice, moderate, skilled, expert), and/or other
information. In embodiments involving computer games or
other such applications, contextual information may include
player’s avatar’s coordinates, speed, direction of movement,
and/or other information. Contextual information may fur-
ther include the types (i.e. enemy player, friend player, rock,
forest, pond, building, etc.) of objects around player’s avatar
and their coordinates, speeds, directions of movement, and/
or other information. Such contextual information can pro-
vide geo-spatial and situational awareness and/or capabili-
ties. Furthermore, in embodiments involving computer
games or other such applications, extra or contextual infor-
mation can be as important (as indicated by Importance
Index 640 or other importance ranking technique) or more
important than the instruction sets and/or their portions. In
yet other embodiments, contextual information includes
observed information such as an object’s location (i.e.
coordinates, etc.), system time, user or group specific infor-
mation, type or version of the application, type of computing
device, and/or other observable information. In yet other
embodiments, contextual information includes computed
information that can be created or calculated from instruc-
tion set portions, extra information, observed information,
and/or other information. For example, an object’s distance,
bearing (i.e. angle or direction of movement, etc.), speed,
and/or other information can be calculated or estimated from

US 9,443,192 Bl

125

the object’s coordinates by utilizing Pythagorean theorem,
Euclidean distance formula, trigonometry, and/or other theo-
rems, formulas, or disciplines. In yet other embodiments,
contextual information may include any component of an
instruction set not captured as an instruction set portion, any
instruction set portion or component thereof that is not used
in substantial similarity comparison, and/or any information
about instruction sets that may be useful in anticipating
future instruction sets. In general, contextual information
can be utilized to provide additional or as much information
as possible for best anticipation of future instruction sets. In
some aspects, context analysis includes analysis of context
in which an instruction set was performed. Context analysis
may include computational functionalities to create, com-
pute, or analyze information from instruction set portions,
extra or contextual information, and/or other available infor-
mation. Context analysis may also include the functionality
to draw inferences from any available contextual or other
information. Context analysis may further include reading or
extracting values or ranges of values from instruction set
portions, extra or contextual information, and/or other avail-
able information. Context analysis may further include
semantic analysis to account for semantically equivalent
variations in instruction set portions and/or other informa-
tion. Context analysis may further include obtaining any
observable information such as system time, user or group
specific information, type or version of the application, type
of computing device, coordinates or other attributes of an
object, and/or other observable information. In other
aspects, a context interpreter can be utilized to interpret or
analyze contextual information. Context interpreter may
perform an extra analysis step and it may attempt to capture
some or all information, steps, and/or elements that may
have been omitted by other elements or steps of the overall
system. In one example, context interpreter can discover or
read the values or ranges of values used in the new instruc-
tion set by extracting the values from its instruction set
portions. The system can then automatically modify the
second instruction set, copy thereof, and/or its portions to
include these values or ranges of values. In another example,
the second instruction set, copy thereof, and/or its portions
can be automatically modified to indicate the same object as
was indicated in the new instruction set. In another example,
the second instruction set, copy thereof, and/or its portions
can be automatically modified to indicate the same variable
as was indicated in the new instruction set, and so on. In
some embodiments, the second instruction set, copy thereof,
and/or its portions can be automatically modified based on
inferences drawn in context analysis. In other embodiments,
the second instruction set, copy thereof, and/or its portions
can be automatically modified based on any technique,
function, or method such as, for example, function for
projecting a path, movement, or trajectory of any objects or
other items in a computer game, for example. In some
aspects, the second instruction set, copy thereof, and/or its
portions, can be automatically modified responsive to the
determination at step 6135. Automatic modification can
optionally be disabled or omitted based on user preferences,
application type, and/or other factors in some implementa-
tions. Context analysis and/or modifying comprise any
action or operation by or for Extra Info 630, Context
interpreter 1120, Operation Modifier 1121, and/or other
disclosed elements.

At step 6145, the second or the modified second instruc-
tion set from the knowledgebase is executed on the com-
puting device. In some embodiments, the new instruction set
can also be executed prior to executing the second instruc-

10

15

20

25

30

35

40

45

50

55

60

65

126

tion set. In one example, the new instruction set can be
executed when it is received by UAIE. In another example,
the new instruction set can be executed before it is received
by UAIE or at any point independent of when it is received
by UAIE. Execution may include performing, by a processor
or a computing device, one or more operations defined by,
or corresponding to, the new instruction set and the second
or the modified second instruction set. Operations include
any operation that can be performed on any computing
device. In some embodiments involving form-based appli-
cations, examples of operations include writing into a text
field, selecting an option in a drop-down menu, checking a
checkbox, editing a text area, clicking a button, and/or other
operations. In some embodiments involving web browsers,
examples of operations include editing a URL box to visit a
web page, clicking a link, saving a web page, scrolling the
view of a web page, selecting and copying a portion of a web
page, creating a bookmark, and/or other operations. In some
embodiments involving computer games and/or 2D/3D
applications, examples of operations include moving a play-
er’s character or avatar, picking up an object, opening a door
or other object, utilizing an object, shooting, selecting an
item, and/or other operations. In some embodiments involv-
ing word processing applications, examples of operations
include writing text, editing text, formatting text, opening a
text file, saving a text file, converting a text file, publishing
a text file, and/or other operations. In some embodiments
involving database applications, examples of operations
include accessing, modifying, creating or deleting data,
table, database, and/or other operations. One of ordinary
skill in art will recognize that, while all possible variations
of operations on the computing device are too voluminous to
list and limited only by a programmer’s design and/or user’s
utilization, all possible operations are within the scope of
this disclosure in various implementations.

At step 6150, the executed second or modified second
instruction set is rated. In some embodiments, a user can be
provided with an option and the user may choose to rate a
previously executed instruction set such as the second or the
modified second instruction set. Rating can serve as evalu-
ator or feedback of how well the system predicted an
instruction set. Rating can be associated with an instruction
set and stored in knowledgebase for improvement of future
predictions or matching. Rating can similarly be imple-
mented for a knowledge cell of which the second or the
modified second instruction set may be part. In some
aspects, user rating can be implemented through displaying
previously executed instruction sets along with their pos-
sible rating values (i.e. 0-10, etc.) via a graphical user
interface (GUI) or other such means for user’s viewing and
consideration. User’s rating action can be recorded and/or
affect a particular instruction set’s rating, which can be used
for improved instruction set anticipation in the future. In
other aspects, rating may be automatic based on a particular
function or method that measures how well an anticipated
instruction set matched the desired operation. Depending on
the type of application and/or other factors, rating can
optionally be disabled or omitted in some implementations.

At step 6155, the execution of the executed second or
modified second instruction set is canceled and the comput-
ing device is restored to a prior state. In some embodiments,
auser may decide that an executed instruction set such as the
second or the modified second instruction set did not per-
formed a desired operation. As such, the user may decide to
cancel the execution of the second or the modified second
instruction set and restore the computing device or applica-
tion to a prior state. Cancelation can be implemented

US 9,443,192 Bl

127

through displaying a previously executed instruction set via
a GUI or other such means for user’s viewing and consid-
eration. Restoring the computing device or application to a
prior state may include prior saving the state of the com-
puting device or application before the execution of a
particular instruction set. Saving the state of the computing
device or application comprises saving its variables, data
structures, objects, location of its current instruction, and/or
other necessary elements in files, databases, environmental
variables, data structures, objects, and/or other repositories.
A canceling action can be recorded and/or affect a particular
instruction set’s rating, which can be used for improved
instruction set anticipation in the future. Depending on the
type of application and/or other factors, canceling and/or
restoring may optionally be disabled or omitted in some
implementations.

Referring to FIG. 29, the illustration shows an embodi-
ment of a method 6200 for autonomous application operat-
ing based UAIE functionalities. The method can therefore be
used on a computing device to enable autonomous operation
of the application with partial, minimal, or no user input. In
some embodiments, the method can be used on a computing
device operating an interface for UAIE that enables autono-
mous operation of the application with partial, minimal, or
no user input. Method 6200 may include any action or
operation of any of the disclosed methods such as, for
example, methods 6100, 6300, 6400, and/or others. Other
additional steps, actions, or operations can be included as
needed, or some of the disclosed ones can be optionally
omitted, or a different order thereof can be implemented in
alternate embodiments of method 6200.

Steps 6205-6235 may include any action or operation
described in steps 6105-6135 of method 6100 as applicable.

At step 6240, the new instruction set is executed on the
computing device. Step 6240 may include any action or
operation described in step 6145 of method 6100 as appli-
cable. In some embodiments, the new instruction set can be
executed earlier in the process such as when it is received by
UAIE. In other embodiments, the new instruction set can be
executed before it is received by UAIE or at any point
independent of when it is received by UAIE in which case
step 6240 can be omitted.

At step 6245, the second instruction set from the knowl-
edgebase or at least one of its portions are modified based on
context analysis. Step 6245 may include any action or
operation described in step 6140 of method 6100 as appli-
cable.

At step 6250, the second or the modified second instruc-
tion set from the knowledgebase, or its portions, are dis-
played on the computing device as options to be selected,
further modified, or canceled. In some embodiments, the
previously automatically modified (if this functionality was
enabled and/or if modification was performed, etc.) second
instruction set, a copy thereof, and/or its portions can be
displayed on the computing device responsive to the deter-
mination at step 6235. In some aspects, the previously
automatically modified second instruction set, a copy
thereof, and/or its portions can be displayed along with one
or more anticipatory instruction sets and/or their portions
that may immediately follow the second instruction set. The
system may include an editor, graphical user interface
(GUI), and/or other means through which a user can view
and/or manually modify, if user chooses, the previously
automatically modified second instruction set and/or its
portions. For example, a GUI can be utilized to receive or
read the previously automatically modified second instruc-
tion set and/or its portions, display (i.e. via text fields,

10

15

20

25

30

40

45

50

55

60

128

drop-down menus, check boxes, and other GUI components,
etc.) the previously automatically modified second instruc-
tion set and/or its portions, and ask the user to manually
modify the previously automatically modified second
instruction set and/or its portions by manipulating GUI
components (i.e. changing values in text fields, selecting
options in drop-down menus, etc.). In some embodiments,
extra or contextual information, and/or other information
can be displayed and/or modified by the user as well. In
some aspects, user selection of the previously automatically
modified second instruction set may effectively serve as
user’s confirmation of his/her intention to execute the pre-
viously modified second instruction set. In other aspects, the
user may choose not to approve or implement (i.e. cancel,
etc.) any anticipatory instruction sets including the previ-
ously modified second instruction set. In yet other aspects,
the user may choose to approve or implement some of the
anticipatory instruction sets including the previously modi-
fied second instruction set, and choose not to approve or
implement (i.e. cancel, etc.) others. Depending on the type
of application and/or other factors, displaying, selecting,
further modifying, and/or canceling can optionally be dis-
abled or omitted in order to provide an uninterrupted opera-
tion of the application. For example, a form based applica-
tion may be suitable for implementing the user confirmation
step, whereas, a game is less suitable for implementing such
interrupting step due to the real time nature of game playing/
execution. Components and/or features of the computing
device or its operating system such as display, keyboard,
pointing device, touchscreen, microphone, camera, video
camera, speech recognition, sound player, video player,
tactile input/output device, and/or other components, fea-
tures, or applications can be utilized to implement the
displaying, selecting, further modifying, and/or canceling of
the previously automatically modified second instruction set
and/or its portions. Displaying, selecting, further moditying,
and/or canceling comprise any action or operation by or for
Confirmation Unit 550, and/or other disclosed elements. In
some aspects, step 6250 may include any action or operation
described in steps 6150 and 6155 of method 6100 as
applicable.

At step 6255, the second or the modified second instruc-
tion set from the knowledgebase is executed on the com-
puting device. Step 6255 may include any action or opera-
tion described in step 6145 of method 6100 as applicable.

Referring to FIG. 30, the illustration shows an embodi-
ment of a method 6300 for learning an application’s opera-
tions based UAIE functionalities. The method can therefore
be used on a computing device to structure and/or store
knowledge of an application’s operations that can be used
for anticipation of the application’s future operations or
autonomous application operating. In some embodiments,
the method can be used on a computing device operating an
interface for UAIE to structure and/or store knowledge of an
application’s operations that can be used for anticipation of
the application’s future operations or autonomous applica-
tion operating. Method 6300 may include any action or
operation of any of the disclosed methods such as, for
example, methods 6100, 6200, 6400, and/or others. Other
additional steps, actions, or operations can be included as
needed, or some of the disclosed ones can be optionally
omitted, or a different order thereof can be implemented in
alternate embodiments of method 6300.

At step 6305, a plurality of recently executed instruction
sets are received, the plurality of recently executed instruc-
tion sets comprise instruction sets executed immediately
prior to and including a currently executed instruction set,

US 9,443,192 Bl

129

the plurality of recently executed instruction sets for per-
forming operations on a computing device. At step 6310, at
least one extra information associated with the plurality of
recently executed instruction sets are received. At step 6315,
the plurality of recently executed instruction sets are disas-
sembled into instruction set portions. At step 6320, portions
of comparative instruction sets and portions of anticipatory
instruction sets are stored into a knowledgebase, the knowl-
edgebase comprising a plurality of portions of comparative
instruction sets and portions of anticipatory instruction sets,
wherein the comparative instruction sets include the least
recently executed instruction sets of the plurality of recently
executed instruction sets and the anticipatory instruction sets
include the most recently executed instruction sets of the
plurality of recently executed instruction sets. At step 6325,
the at least one extra information associated with the com-
parative instruction sets and the at least one extra informa-
tion associated with the anticipatory instruction sets are store
into the knowledgebase.

Referring to FIG. 31, the illustration shows an embodi-
ment of a method 6400 for anticipating an application’s
operations based UAIE functionalities. The method can
therefore be used on a computing device to anticipate an
application’s operations from stored knowledge of the appli-
cation’s operations. In some embodiments, the method can
be used on a computing device operating an interface for
UALIE to anticipate an application’s operations from stored
knowledge of the application’s operations. Method 6400
may include any action or operation of any of the disclosed
methods such as, for example, methods 6100, 6200, 6300,
and/or others. Other additional steps, actions, or operations
can be included as needed, or some of the disclosed ones can
be optionally omitted, or a different order thereof can be
implemented in alternate embodiments of method 6400.

At step 6405, a knowledgebase is accessed that stores
portions of comparative instruction sets and portions of
anticipatory instruction sets, the knowledgebase comprising
a plurality of portions of comparative instruction sets and
portions of anticipatory instruction sets, the knowledgebase
further stores at least one extra information associated with
the comparative instruction sets and at least one extra
information associated with the anticipatory instruction sets,
wherein the comparative and the anticipatory instruction sets
for performing operations on a computing device. At step
6410, new instruction sets for performing operations on the
computing device are received. At step 6415, at least one
extra information associated with the new instruction sets
are received. At step 6420, portions of the new instruction
sets are compared with portions of the comparative instruc-
tion sets in the knowledgebase. At step 6425, at least one
extra information associated with the new instruction sets
are compared with at least one extra information associated
with the comparative instruction sets in the knowledgebase.
At step 6430, a determination is made that there is a
substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
knowledgebase. At step 6435, one or more anticipatory
instruction sets in the knowledgebase are anticipated.

Referring to FIG. 32, the teaching presented by the
disclosure can be implemented to include various artificial
intelligence methods, systems, and/or models instead of or
in addition to the ones previously described. UAIE is
independent of the artificial intelligence method, system,
and/or model used and any method, system, and/or model
can be utilized to facilitate functionalities described herein.
Examples of these methods, systems, and/or models include
deep learning, supervised learning, unsupervised learning,

20

25

35

40

45

55

130

neural networks (i.e. Neural Network 850, convolutional
neural network, recurrent neural network, etc.), search-
based, logic and/or fuzzy logic-based, optimization-based,
tree/graph/other data structure-based, hierarchical, symbolic
and/or sub-symbolic, evolutionary, genetic, multi-agent,
deterministic, probabilistic, statistical, and/or other methods,
systems, and/or models.

In one example shown in Model A in FIG. 32, UAIE,
Artificial Intelligence Unit 130, and/or other elements of the
disclosure may include a neural network (also referred to as
artificial neural network, etc.). As such, machine learning,
knowledge representation or structure, pattern recognition,
decision making, and/or other artificial intelligence func-
tionalities may include a network of Nodes 852 (also
referred to as neurons in the context of neural networks, etc.)
and Connections 853 similar to that of a brain. Node 852 can
store any data, object, data structure, and/or other item, or
reference thereto. Node 852 may also include a function for
transforming or manipulating any data, object, data struc-
ture, and/or other item. Examples of such transformation
function include mathematical functions (i.e. addition, sub-
traction, multiplication, divisions, etc.), object manipulation
functions (i.e. creating an object, modifying an object,
deleting an object, appending objects, etc.), data structure
manipulation functions (i.e. creating a data structure, modi-
fying a data structure, deleting a data structure, creating a
data field, modifying a data field, deleting a data field, etc.),
and/or other transformation functions. A computational
model can be utilized to compute values from inputs based
on a pre-programmed or learned function or method. For
example, a neural network may include one or more input
neurons that can be activated by inputs such as Operations
610 or Instruction Sets 600, or their Instruction Set Portions
620. Activations of these neurons can then be passed on,
weighted, and transformed by a function to other neurons.
This process can be repeated until one or more output
neurons is/are activated such as neurons comprising antici-
patory Operations 610 or Instruction Sets 600, or their
Instruction Set Portions 620. Artificial neural network types
may vary from those with only one or two layers of single
direction logic, to multi-input many directional feedback
loops and layers. Neural network systems can use weights to
change the parameters of the throughput and the varying
connections among the neurons. As such, an artificial neural
network can be autonomous (i.e. facilitate autonomous
Software Application’s 120 operation, etc.) and learn by
input from its designer, environment, outside teacher, and/or
self-teaching from written-in rules. An exemplary embodi-
ment of Neural Network 850 is described later.

In another example shown in Model B in FIG. 32, UAIE,
Artificial Intelligence Unit 130, and/or other elements of the
disclosure may include a tree or a tree-like structure. As
such, machine learning, knowledge representation or struc-
ture, pattern recognition, decision making, and/or other
artificial intelligence functionalities may include Nodes 852
and Connections 853 (i.e. references, edges, etc.) similar to
that of a tree. In some aspects, a tree data structure comprises
a collection of Nodes 852 where a Node 852 may include a
value and/or Connections 853 (i.e. references, edges, etc.) to
other or children Nodes 852. Trees can be utilized as one of
the predictive modeling approaches used in machine learn-
ing. In some aspects, a decision tree can be utilized as a
predictive model that can map observations about an item to
conclusions about the item’s target value. In other aspects,
a decision tree can be used to represent decisions and
decision making. In yet other aspects, a decision tree may
describe data instead of decisions, and it can be an input for

US 9,443,192 Bl

131

decision making. In yet other aspects, a decision tree can be
utilized as a model that may predict the value of a target
variable based on several input variables where each interior
node corresponds to an input variable and each edge to a
children node corresponds to a possible value of the input
variable, and where each leaf node may represent a value of
the target variable given the values of the input variables
represented by the path from the root node to the leaf node.
A decision tree may include various types of nodes such as
decision nodes, chance nodes, end nodes, and/or other types
of nodes. Each node may include any data structure or
object, or a reference thereto, such as array, list, linked list,
doubly linked list, queue, tree, heap, graph, map, grid,
matrix, multi-dimensional matrix, table, database, DBMS,
file, and/or any other type or form of a data structure.

In a further example shown in Model C in FIG. 32, UAIE,
Artificial Intelligence Unit 130, and/or other elements of the
disclosure may include a hierarchical structure or system. As
such, machine learning, knowledge representation or struc-
ture, pattern recognition, decision making, and/or other
artificial intelligence functionalities may include a structure
of Nodes 852 and Connections 853 organized as a hierarchy.
A hierarchical structure may include nodes in a tree-like
structure, although data structures other than a tree can be
used. In some aspects, instructions, tasks, and/or goals to be
accomplished may flow down the hierarchy’s layers from
superior nodes to subordinate nodes whereas results and/or
other information may flow up the hierarchy’s layers from
subordinate to superior nodes. Nodes can also communicate
with their siblings.

In yet another example UAIE, Artificial Intelligence Unit
130, and/or other elements of the disclosure may include a
search-based method, system, and/or model. As such,
machine learning, knowledge representation or structure,
pattern recognition, decision making, and/or other artificial
intelligence functionalities may include searching through a
collection of possible solutions. For example, a search
method can search through a list, tree, graph, or other data
structure (i.e. Knowledgebase 530, etc.) that includes goals
(i.e. Operations 610 or Instruction Sets 600) and/or sub-
goals (i.e. Instruction Set Portions 620, etc.) to find a path to
a target goal (i.e. anticipatory Operations 610 or instruction
Sets 600, or Instruction Set Portions 620, etc.), where each
step may include application of a function (i.e. Substantial
Similarity Comparison 1010, etc.) or rule (i.e. inference rule,
logic rule, probability rule, statistical rule, etc.). A search
method may use heuristics to limit the search for solutions
into a smaller sample size by eliminating choices that are
unlikely to lead to the goal. Heuristics provide a best guess
solution. A search can also include optimization. For
example, a search may begin with a guess and then refine the
guess incrementally until no more refinements can be made.
In a further example UAIE, Artificial Intelligence Unit 130,
and/or other elements of the disclosure may include logic-
based method, system, and/or model. As such, machine
learning, knowledge representation or structure, pattern rec-
ognition, decision making, and/or other artificial intelligence
functionalities can use formal or another type of logic. Logic
based systems may involve inferences or deriving conclu-
sions from a set of premises. As such, a logic based system
can extend a knowledgebase automatically using inferences.
Examples of the types of logic that can be utilized include
propositional or sentential logic that comprises logic of
statements which can be true or false; first-order logic that
may allow the use of quantifiers and predicates, and that can
express facts about objects, their properties, and their rela-
tions with each other; fuzzy logic that may allow degrees of

30

40

45

50

132

truth to be represented as a value between 0 and 1, rather
than simply true (1) or false (0), which can be used for
uncertain reasoning; subjective logic that comprises a type
of probabilistic logic that may take uncertainty and belief
into account, which can be suitable for modeling and ana-
lyzing situations involving uncertainty, incomplete knowl-
edge and different world views; and/or other types of logic.
Any logic-based method, system, and/or model can be
utilized herein that can take inputs such as Operations 610
or Instruction Sets 600, or their Instruction Set Portions 620,
and produce outputs such as anticipatory Operations 610 or
Instruction Sets 600, or their Instruction Set Portions 620. In
a further example UAIE, Artificial Intelligence Unit 130,
and/or other elements of the disclosure may include a
probabilistic method, system, and/or model. As such,
machine learning, knowledge representation or structure,
pattern recognition, decision making, and/or other artificial
intelligence functionalities can be implemented to operate
with incomplete or uncertain information where probabili-
ties may affect outcomes. Bayesian network, among other
models, is an example of a tool for general artificial intel-
ligence functionalities such as reasoning, learning, planning,
perception, and/or others. Probabilistic methods can also be
used for functionalities such as filtering, prediction, smooth-
ing, and finding explanations for streams of data, thereby,
helping to analyze processes that occur over time, and/or
other functionalities. Any probabilistic method, system, and/
or model can be utilized herein that can take inputs such as
Operations 610 or Instruction Sets 600, or their Instruction
Set Portions 620, and produce outputs such as anticipatory
Operations 610 or Instruction Sets 600, or their Instruction
Set Portions 620. One of ordinary skill in art will understand
that, while all possible variations of artificial intelligence
methods, systems, and/or models are too voluminous to list,
all of these methods, systems, and/or models are within the
scope of this disclosure in various implementations. One of
ordinary skill in art will also recognize that an intelligent
system or agent may solve a specific problem by using any
approach that works such as, for example, some systems or
agents can be symbolic and logical, some can be sub-
symbolic neural networks, some can be deterministic or
probabilistic, some can be hierarchical, some may include
searching techniques, while others may use other or a
combination of approaches. For example, any artificial intel-
ligence method, system, and/or model can be utilized that
may accept inputs such as Operations 610 or Instruction Sets
600, and/or their Instruction Set Portions 620, and produce
outputs such as anticipatory Operations 610 or Instruction
Sets 600, and/or their Instruction Set Portions 620 that may
ultimately affect or control Software Application’s 120
operation.

Referring to FIG. 33, Artificial Intelligence Unit 130
comprising Neural Network 850 is illustrated. In some
embodiments, Artificial Intelligence Unit 130 includes inter-
connected Command Disassembler 500, Operation List 510,
Knowledge Structuring Unit 520, Neural Network 850,
Decision-making Unit 540, Confirmation Unit 550, and
Command Assembler 560. Other additional elements can be
included as needed, or some of the disclosed ones can be
excluded, or a combination thereof can be utilized in alter-
nate embodiments.

Referring to FIG. 34, an embodiment of Knowledge
Structuring Unit 520 learning Operations 610 or Instruction
Sets 600 utilizing Neural Network 850 is illustrated. Neural
Network 850 includes a number of neurons or Nodes 852
interconnected by Connections 853 as previously described.
Operations 610 are shown instead of Nodes 852 to simplify

US 9,443,192 Bl

133

the illustration as Node 852 includes Operation 610, for
example. Therefore, Operations 610 and Nodes 852 can be
used interchangeably herein depending on context. Also, to
simplify description, a mention or reference to Operation
610 includes a reference to instruction Set 600 from which
the Operation 610 originates as previously described. One of
ordinary skill in art will understand that Node 852 may
include other elements and/or functionalities instead of or in
addition to Operation 610. In some designs, Neural Network
850 comprises a number of Layers 854 each of which may
include one or more Operations 610. Operations 610 in
successive Layers 854 can be connected by Connections
853. Connection 853 may include occurrence count and
weight as described later. It should be understood that, in
some embodiments, Operations 610 in one Layer 854 of
Neural Network 850 need not be connected only with
Operations 610 in a successive Layer 854, but also in any
other Layer 854, thereby creating shortcuts (i.e. shortcut
Connections 853, etc.) through Neural Network 850. For
example, creating a shortcut Connection 853 can be imple-
mented by performing Substantial Similarity Comparisons
1010 of an Operation 610 from Operation List 510 with
Operations 610 in more than one Layer 854 when applying
(i.e. storing, copying, etc.) the Operation 610 from Opera-
tion List 510 onto Neural Network 850. Once created,
shortcut Connections 853 enable a wider variety of Opera-
tions 610 to be considered when selecting a path through
Neural Network 850. An Operation 610 can also be con-
nected to itself such as, for example, in recurrent neural
networks. In general, any Operation 610 can be connected
with any other Operation 610 anywhere else in Neural
Network 850. In further embodiments, back-propagation of
any data or information can be utilized. In one example,
back-propagation of comparison accuracy indexes of com-
pared Operations 610 in a path through Neural Network 850
can be implemented. In another example, back-propagation
of errors can be implemented. Such back-propagations can
then be used to adjust occurrence counts and/or weights of
Connections 853 for better future predictions, for example.
Any other back-propagation can be implemented for other
purposes. Any combination of Nodes 852 (i.e. Nodes 852
comprising Operations 610, etc.), Connections 853, Layers
854, and/or other elements or techniques can be imple-
mented in alternate embodiments. Neural Network 850 may
include any type or form of a neural network known in art
such as a feed-forward neural network, a back-propagating
neural network, a recurrent neural network, a convolutional
neural network, and/or others including a custom neural
network.

In some embodiments, Knowledge Structuring Unit 520
may apply (i.e. copy, store, etc.) the most recent Operations
610 (i.e. Operation n, Operation n-1, etc.) from Operation
List 510 onto anticipatory Layers 854 (i.e. Layer n+2, Layer
n+1, etc.) of Neural Network 850 and apply the least recent
Operations 610 (i.e. Operation n-2, Operation n-3, Opera-
tion n-4, etc.) from Operation List 510 onto comparative
Layers 854 (i.e. Layer n, Layer n-1, Layer n-2, etc.) of
Neural Network 850, for example. The term apply or apply-
ing may refer to storing, copying, inserting, or other similar
action, therefore, these terms may be used interchangeably
herein depending on context. Specifically, for example,
Knowledge Structuring Unit 520 can apply Operation n
from Operation List 510 onto Layer n+2 of Neural Network
850, apply Operation n-1 from Operation List 510 onto
Layer n+1 of Neural Network 850, apply Operation n-2
from Operation List 510 onto Layer n of Neural Network
850, and so forth. Therefore, Operations 610 with an order

5

10

20

25

30

35

40

45

50

55

60

65

134

number greater than n may become anticipatory Operations
610 in their respective anticipatory Layers 854 and the rest
of the Operations 610 may become comparative Operations
610 in their respective comparative Layers 854, although
this particular split can differ in alternate embodiments.
Also, as indicated by the up and down vertical dotted arrows,
application of Operation n from Operation List 510 can start
at any Layer 854 of Neural Network 850. This way, the
number of comparative and anticipatory Layers 854 can be
adjusted for a particular application based on the type of
Software Application 120, experience, testing, inquiry,
analysis, synthesis, or other techniques. The number of
comparative and anticipatory Layers 854 can be determined
or set by a user, by UAIE administrator, or automatically by
the system based on such knowledge or information. Any
number of comparative and any number of anticipatory
Layers 854, or Operations 610 therein, can be utilized in
Neural Network 850. In effect, Neural Network 850 stores
Software Application’s 120 operations (i.e. Operations 610
or Instruction Sets 600) where, for example, Layer n, Layer
n-1, and Layer n-2 can later be used for comparison (i.e.
comparative Layers 854, etc.) with the then Software Appli-
cation’s 120 recent operations (i.e. including current, etc.),
and Layer n+1 and Layer n+2 can later be used for antici-
pation (i.e. anticipatory Layers 854, etc.) of Software Appli-
cation’s 120 future or subsequent operations. It should be
noted that n, m, and/or other such letters or indicia in any of
the figures may be different numbers in different elements
even where the elements are depicted in the same figure. In
general, n, m, and/or other such letters or indicia may follow
the immediate sequence and/or context where they are
indicated. Therefore, an Operation 610 from Operation List
510 having a same letter or indicia as an Operation 610 from
Neural Network 850 may be a different Operation 610. In
one example, Operation n from Operation List 510 may be
different than any Operation n from Neural Network 850. In
another example, Operation n-2 from Operation List 510
may be different than any Operation n-2 from Neural
Network 850. Also, Operations 610 in a same Layer 854
may be different Operations 610 belonging to that Layer
854. In one example, Operations n-2 are different Opera-
tions 610 belonging to Layer n-2. In another example,
Operations n+1 are different Operations 610 belonging to
Layer n+1.

In some embodiments, Knowledge Structuring Unit 520
receives a current Operation List 510 and applies the least
recent Operations 610 from Operation List 510 onto Neural
Network 850 first and the most recent Operations 610 from
Operation List 510 last, thereby implementing learning of
Operations 610 from Operation List 510. This is an example
of how Operations 610 from Operation List 510 may be
processed or applied from the least recent one to the most
recent one and/or how Neural Network 850 or a portion
thereof can be traversed forward in the learning process.
Knowledge Structuring Unit 520 can perform Substantial
Similarity Comparisons 1010 of an Operation 610 in Opera-
tion List 510 with one or more Operations 610 in a corre-
sponding Layer 854 of Neural Network 854. If substantially
similar Operation 610 is found in the corresponding Layer
854, Knowledge Structuring Unit 520 may update occur-
rence count and weight of Connection 853 to that Operation
610 from an Operation 610 in a prior Layer 854 (i.e. prior
lower numbered Layer 854, etc.), and update any other
Connections 853 of the Operation 610 in the prior Layer
854. On the other hand, if substantially similar Operation
610 is not found, Knowledge Structuring Unit 520 may
insert (i.e. copy, store, etc.) Operation 610 from Operation

US 9,443,192 Bl

135

List 510 into the corresponding Layer 854 of Neural Net-
work 850, and create a Connection 853 to the inserted
Operation 610 from an Operation 610 in a prior Layer 854
(i.e. prior lower numbered Layer 854, etc.) including assign-
ing an occurrence count to the new Connection 853, calcu-
lating a weight of the new Connection 853, and updating any
other Connections 853 of the Operation 610 in the prior
Layer 854. Furthermore, inserting an Operation 610 into a
Layer 854 of Neural Network 850 may also include creating
a Connection 853 between the inserted Operation 610 and an
Operation 610 in a subsequent (i.e. subsequent higher num-
bered Layer 854, etc.) Layer 854, thereby fully connecting
the inserted Operation 610. Creating the Connection 853
between the inserted Operation 610 and an Operation 610 in
the subsequent Layer 854 may be performed after the next
Substantial Similarity Comparison 1010 when the target
Operation 610 from the subsequent Layer 854 is determined.

In one example, Knowledge Structuring Unit 520 can
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610aa from Operation List 510 and Operations 610 in
the corresponding Layer 854a. In the case that Knowledge
Structuring Unit 520 finds a substantially similar match
between Operation 610aa and Operation 610ba, Knowledge
Structuring Unit 520 may create a Connection 853 between
Operation 610ba and an Operation 610 in a prior Layer 854
(none in this example) if the Operation 610 in the prior
Layer 854 is newly inserted, the created Connection 853
having occurrence count of 1 and weight of 1. If the
Operation 610 in the prior Layer 854 is pre-existing (i.e. not
newly inserted, etc.), Knowledge Structuring Unit 520 may
update occurrence count and weight of a Connection 853
between Operation 610ba and the Operation 610 in the prior
Layer 854, and update weights of any other Connections 853
originating from the Operation 610 in the prior Layer 854 as
later described. Knowledge Structuring Unit 520 can then
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ab from Operation List 510 and Operations 610 in
the corresponding Layer 8545. In the case that Knowledge
Structuring Unit 520 does not find a substantially similar
match, Knowledge Structuring Unit 520 may insert Opera-
tion 610654 into Layer 8545 and copy Operation 610ab into
the inserted Operation 61055. Knowledge Structuring Unit
520 may also create Connection 853a between Operation
610ba and Operation 610bb with occurrence count of 1 and
weight calculated based on the occurrence count as later
described. Knowledge Structuring Unit 520 may also update
weights of other Connections 853 originating from Opera-
tion 610ba to account for the newly created Connection
853a as later described. Knowledge Structuring Unit 520
can then perform Substantial Similarity Comparisons 1010
of Operation 610ac from Operation List 510 and Operations
610 in the corresponding Layer 854c¢. In the case that
Knowledge Structuring Unit 520 finds a substantially simi-
lar match between Operation 610ac and Operation 6105bc,
Knowledge Structuring Unit 520 may create Connection
8535 between Operation 610bh and Operation 610bc with
occurrence count of 1 and weight of 1. Knowledge Struc-
turing Unit 520 can then perform Substantial Similarity
Comparisons 1010 of Operation 610ad from Operation List
510 and Operations 610 in the corresponding Layer 8544. In
the case that Knowledge Structuring Unit 520 does not find
a substantially similar match, Knowledge Structuring Unit
520 may insert Operation 6105d into Layer 8544 and copy
Operation 610ad into the inserted Operation 6105d. Knowl-
edge Structuring Unit 520 may also create Connection 853¢
between Operation 6105c and Operation 61054 with occur-
rence count of 1 and weight calculated based on the occur-

10

15

20

25

30

40

45

50

55

60

65

136

rence count as later described. Knowledge Structuring Unit
520 may also update weights of other Connections 853
originating from Operation 6105c¢ to account for the newly
created Connection 853¢ as later described. Knowledge
Structuring Unit 520 can then perform Substantial Similarity
Comparisons 1010 of Operation 610ae from Operation List
510 and Operations 610 in the corresponding Layer 854e. In
the case that Knowledge Structuring Unit 520 does not find
a substantially similar match, Knowledge Structuring Unit
520 may insert Operation 610be into Layer 854¢ and copy
Operation 610ae into the inserted Operation 610be. Knowl-
edge Structuring Unit 520 may also create Connection 8534
between Operation 6105d and Operation 610be with occur-
rence count of 1 and weight of 1. As indicated by the up and
down dotted arrows, Operation List 510 can be aligned
differently with Layers 854 of Neural Network 850, thereby
adjusting the split between comparative and anticipatory
Layers 854 in alternate embodiments. Therefore, application
of any additional Operations 610 from Operation List 510
onto Layers 854 of Neural Network 850 follows the same
logic or process as above-described.

Substantial Similarity Comparison 1010 used in some
embodiments involving Neural Network 850 comprises the
functionality for comparing or matching an Operation 610 or
Instruction Set 600 from Operation List 510 with Operation
610 or Instruction Set 600 from Neural Network 850, and/or
other functionalities. The rules for substantial similarity or
substantial similarity match can be defined based on the type
of Software Application 120, experience, testing, inquiry,
analysis, synthesis, or other techniques. As such, the rules of
Substantial Similarity Comparison 1010 can be set by a user,
by UAIE administrator, or automatically by the system
based on such experience, knowledge, and/or input. All
previously described features, functionalities, and embodi-
ments of Substantial Similarity Comparison 1010 can be
utilized in embodiments of UAIE comprising Neural Net-
work 850 as applicable.

In some aspects, Substantial Similarity Comparison 1010
can determine total equivalence when all Instruction Set
Portions 620 and/or Extra Info 630 of the compared Opera-
tions 610 or Instructions Sets 600 match. If total equivalence
is not found, Substantial Similarity Comparison 1010 may
attempt to determine substantial similarity between the
compared Operations 610 or Instructions Set 600. In one
example, substantial similarity can be achieved when all but
one Instruction Set Portion 620 and/or Extra Info 630 of the
compared Operations 610 or Instruction Sets 600 match. In
another example, substantial similarity can be achieved
when all but two, three, or more (any threshold number can
be used, etc.) Instruction Set Portions 620 and/or Extra Info
630 of the compared Operations 610 or instruction Sets 600
match. The number of allowable non-matching Instruction
Set Portions 620 and/or Extra info 630 can be defined by a
user, by UAIE administrator, or automatically by the system.

In further aspects, Substantial Similarity Comparison
1010 can determine substantial similarity in terms of
matches in more important Instruction Set Portions 620
and/or Extra Info 630, thereby tolerating mismatches in less
important Instruction Set Portions 620 and/or Extra Info
630. In one example, Substantial Similarity Comparison
1010 can determine substantial similarity in terms of
matches in commands, functions, objects, and/or parameters
thereby tolerating mismatches in variable names and/or
values. Importance of an Instruction Set Portion 620 and/or
Extra Info 630 may be indicated by the previously described
Importance Index 640, or by another importance ranking
technique. In some designs, Substantial Similarity Compari-

US 9,443,192 Bl

137

son 1010 can be configured to omit any Instruction Set
Portions 620 and/or Extra Info 630 from the comparison. In
one example, some or all instruction Set Portions 620 and/or
Extra Info 630 containing values can be omitted. In another
example, some or all Instruction Set Portions 620 and/or
Extra Info 630 containing operators, or other components
can be omitted. In another example, some or all Extra Info
630 can be omitted. In yet another example (i.e. context
reliant applications, etc.), some or all Instruction Set Por-
tions 620 can be omitted.

In yet other aspects, Substantial Similarity Comparison
1010 may include Comparison Strictness Function 1011 that
comprises the functionality to define appropriately strict
rules for determining substantial similarity between the
compared Operations 610 or Instruction Sets 600. All pre-
viously described features, functionalities, and embodiments
of Comparison Strictness Function 1011 can be utilized in
embodiments of UAIE comprising Neural Network 850 as
applicable. In one example, Comparison Strictness Function
1011 can set, reset, and/or adjust the strictness of the rules
for finding or determining substantial similarity between the
compared Operations 610 or Instruction Sets 600, thereby
fine tuning Substantial Similarity Comparison 1010 so that
the rules for determining substantial similarity are appropri-
ately strict.

All previously described features, functionalities, and
embodiments related to Substantial Similarity Comparison
1010 such as usage of Extra Info 630 (i.e. time stamps,
contextual information, etc.), usage of contextual informa-
tion, usage of Importance Index 640, usage of Comparison
Accuracy Index 650, performing semantic analysis, analyz-
ing context in which Instruction Sets 600 or Operations 610
have been performed, creating or analyzing computed infor-
mation, and/or drawing inferences from any available con-
textual, computed, or other information can similarly be
utilized in embodiments involving Neural Network 850.

Referring to FIG. 35A, FIG. 35B, and FIG. 35C, exem-
plary embodiments of updating weights of Connections 853
are illustrated. In some aspects, Knowledge Structuring Unit
520 may apply the least recent Operations 610 from Opera-
tion List 510 onto Neural Network 850 first and the most
recent Operations 610 from Operation List 510 last (i.e.
apply Operations 610 from the least recent one to the most
recent one, etc.) as previously described. As shown for
example in FIG. 35A, Operation 610da is connected to
Operation 610db and Operation 610dc by Connection 8530
and Connection 853p, respectively. Operation 610da may
reside in one Layer 854 of Neural Network 850, whereas,
Operation 61045 and Operation 610dc may reside in another
Layer 854. Each of Connection 8530 and Connection 853p
may include number of occurrences and weight. The number
of occurrences may track or store the number of observa-
tions that an Operation 610 (or substantially similar Opera-
tion 610) was followed by another Operation 610 (or sub-
stantially similar Operation 610) indicating a connection or
relationship between them. For example, Operation 610da
(or substantially similar Operation 610 to Operation 610da)
was followed by Operation 610db (or substantially similar
Operation 610 to Operation 6104b) 10 times as indicated in
the number of occurrences of Connection 83530. Also,
Operation 610da (or substantially similar Operation 610 to
Operation 610da) was followed by Operation 610dc (or
substantially similar Operation 610 to Operation 610dc) 15
times as indicated in the number of occurrences of Connec-
tion 853p. The weight of Connection 8530 can be calculated
or determined as the number of occurrences of Connection
8530 divided by the sum of occurrences of all connections

5

10

15

20

25

30

35

40

45

50

55

60

138

(i.e. Connection 8530 and Connection 853p, etc.) originat-
ing from Operation 610da. Therefore, the weight of Con-
nection 8530 can be calculated or determined as 10/(10+
15)=0.4, for example. Also, the weight of Connection 853p
can be calculated or determined as 15/(10+15)=0.6, for
example. Therefore, the sum of weights of Connection 8530,
Connection 853p, and/or any other Connections 853 origi-
nating from Operation 610da may equal to 1 or 100%. As
shown for example in FIG. 35B, in the case that Operation
610dd is inserted and an observation is made that Operation
610dd follows Operation 610da, Connection 853¢ can be
created between Operation 610da and Operation 610dd. The
occurrence count of Connection 853¢ can be set to 1 and
weight determined as 1/(10+15+1)=0.038. The weights of
all other connections (i.e. Connection 8530, Connection
853p, etc.) originating from Operation 610da may be
updated to account for the creation of Connection 8534.
Therefore, the weight of Connection 8530 can be updated as
10/(10+15+1)=0.385. The weight of Connection 853p can
also be updated as 15/(10+15+1)=0.577. As shown for
example in FIG. 35C, in the case that an additional occur-
rence of Connection 8530 is observed (i.e. Operation 610d4b
followed Operation 610da, etc.), occurrence count of Con-
nection 8530 and weights of all connections (i.e. Connection
8530, Connection 853p, and Connection 853¢, etc.) origi-
nating from Operation 610da may be updated to account for
this observation. The occurrence count of Connection 8530
can be increased by 1 and its weight updated as 11/(11+15+
1)=0.407. The weight of Connection 853p can also be
updated as 15/(11+15+1)=0.556. The weight of Connection
853¢ can also be updated as 1/(11+15+1)=0.037.

In some embodiments, instead of applying Operations
610 from Operation List 510 onto Neural Network 850
individually as previously described, Knowledge Structur-
ing Unit 520 can store (i.e. copy, insert, etc.) some or all
Operations 610 from Operation List 510 into Neural Net-
work 850 collectively as a separate sequence or path.
Operations 610 in such separate sequence or path may not be
cross-connected with Operations 610 in other sequences or
paths. In such embodiments, Substantial Similarity Com-
parison 1010 can be utilized to compare Operations 610
from Operation List 510 with Operations 610 from Neural
Network 850 to find a separate sequence or path in the
Neural Network 850 comprising Operations 610 that are
substantially similar to Operations 610 from Operation List
510. Any features, functionalities, and embodiments of the
later described Decision-making Unit 540 can be utilized in
finding such separate sequence or path. If substantially
similar separate sequence or path is found, storing (i.e.
copying, inserting, etc.) Operations 610 from Operation List
510 into Neural Network 850 can optionally be omitted. For
example, if Operations 610 in a separate sequence or path
through Neural Network 850 are found to be nearly identical
or substantially similar (i.e. with a high degree of similarity,
etc.) to Operations 610 in Operation List 510, storing (i.e.
copying, inserting, etc.) Operations 610 from Operation List
510 into Neural Network 850 may not add much or any
additional knowledge to Neural Network 850. Therefore,
storing the Operations 610 from Operation List 510 into
Neural Network 850 can be omitted to save storage
resources and limit the number of Operations 610 that may
later need to be processed or compared. Conversely, for
example, if Operations 610 in none of the separate
sequences or paths through Neural Network 850 are found
to be substantially similar to Operations 610 in Operation
List 510, Knowledge Structuring Unit 520 can store into
Neural Network 850 a new separate sequence or path

US 9,443,192 Bl

139

comprising the Operations 610 from Operation List 510,
thereby implementing learning of Operations 610 from
Operation List 510. Any features, functionalities, and
embodiments of Substantial Similarity Comparison 1010,
Importance Index 640, Comparison Accuracy Index 650,
and/or other disclosed elements can be utilized to facilitate
the determination whether to apply or store Operations 610
from Operation List 510 onto/into Neural Network 850
individually or collectively.

There may be advantages to storing some or all Opera-
tions 610 from Operation List 510 into Neural Network 850
collectively as a separate sequence or path. In some aspects,
storing Operations 610 from Operation List 510 into Neural
Network 850 collectively as a separate sequence or path
enables the system to decide whether to store the entire
Operation List 510 into Neural Network 850 or not store the
Operation List 510 at all (i.e. all or nothing, etc.). In other
aspects, storing Operations 610 from Operation List 510 into
Neural Network 850 collectively as a separate sequence or
path eliminates or reduces the need to keep track of and use
occurrence counts and weights of Connections 853 since an
Operation 610 stored in a separate sequence or path is
connected only with a previous and subsequent Operation
610 in the sequence or path. In further aspects, storing
Operations 610 from Operation List 510 into Neural Net-
work 850 collectively as a separate sequence or path may
resolve a potential issue of one or more Connections 853 in
Neural Network 850 becoming so frequent and dominant
that selecting a path through Neural Network 850 would
frequently “default” to go through these Connections 853,
thereby not allowing alternative paths to be considered or
selected.

Referring to FIG. 36, an embodiment of Knowledge
Structuring Unit 520 learning Operations 610 or Instruction
Sets 600 utilizing Neural Network 850 is illustrated. In some
aspects, Knowledge Structuring Unit 520 receives a current
Operation List 510 and implements a combination of apply-
ing Operations 610 from Operation List 510 individually
and storing Operations 610 from Operation List 510 collec-
tively onto/into Neural Network 850. For example, some
Operations 610 from Operation List 510 can be applied
individually onto corresponding Layers 854 of Neural Net-
work 850, whereas, other Operations 610 from Operation
List 510 can be stored collectively into corresponding [ay-
ers 854 of Neural Network 850, thereby creating a partially
separate sequence or path in Neural Network 850. Specifi-
cally, for instance, the least recently used or executed
Operations 610 (i.e. Operation n-2, Operation n-3, Opera-
tion n-4, etc.) from Operation List 510 can be applied
individually onto comparative Layers 854 of Neural Net-
work 850, whereas, the most recently used or executed
Operations 610 (i.e. Operation n, Operation n-1, etc.) from
Operation List 510 can be stored collectively into anticipa-
tory Layers 854 of Neural Network 850. In such implemen-
tations, Operations 610 in comparative Layers 854 of Neural
Network 850 may be interconnected with other Operations
610, whereas, Operations 610 in anticipatory Layers 854 of
Neural Network 850 may be stored in their own separate
sequences or paths as described in an exemplary embodi-
ment below. Any other combination of applying and storing
Operations 610 from Operation List 510 individually or
collectively onto/into Neural Network 850 can be imple-
mented in alternate embodiments. It should be understood
that, in addition to the combinations of applying and storing
Operations 610 from Operation List 510 individually and
collectively onto/into Neural Network 850, each of these
techniques can be implemented solely for the entire Neural

20

40

45

140

Network 850 without combining it with the other technique,
or other techniques in general. For example, only individual
applying or only collective storing of Operations 610 from
Operation List 510 onto/into Neural Network 850 can be
implemented.

In some embodiments, Knowledge Structuring Unit 520
receives a current Operation List 510 and applies/stores the
most recent Operations 610 from Operation List 510 onto/
into Neural Network 850 first and the least recent Operations
610 from Operation List 510 last, thereby implementing
learning of Operations 610 from Operation List 510. This is
an example of how Operations 610 from Operation List 510
may be processed or applied/stored from the most recent one
to the least recent one and/or how Neural Network 850 or a
portion thereof can be traversed backward in the learning
process. Also, Knowledge Structuring Unit 520 may store
the most recent Operations 610 from Operation List 510 into
corresponding anticipatory Layers 854 of Neural Network
850 collectively as separate sequences or paths, and apply
the least recent Operations 610 from Operation List 510 onto
corresponding comparative Layers 854 of Neural Network
850 individually, for example. Storing the most recent
Operations 610 from Operation List 510 into corresponding
anticipatory Layers 854 of Neural Network 850 collectively
as separate sequences or paths can be implemented by
performing Substantial Similarity Comparisons 1010 to
compare the most recent Operations 610 from Operation
List 510 with Operations 610 from anticipatory Layers 854
of Neural Network 850 to find a separate sequence or path
in the anticipatory Layers 854 of Neural Network 850
comprising Operations 610 that are substantially similar to
the most recent Operations 610 from Operation List 510. If
such separate sequence or path is not found, Knowledge
Structuring Unit 520 can store into anticipatory Layers 854
of Neural Network 850 a new separate sequence or path
comprising the most recent Operations 610 from Operation
List 510 as previously described. Applying the least recent
Operations 610 from Operation List 510 onto corresponding
comparative Layers 854 of Neural Network 850 individually
can be implemented by performing Substantial Similarity
Comparisons 1010 of a least recent Operation 610 in Opera-
tion List 510 with one or more Operations 610 in a corre-
sponding comparative Layer 854 of Neural Network 854. If
substantially similar Operation 610 is found in the corre-
sponding comparative Layer 854, Knowledge Structuring
Unit 520 may update occurrence count and weight of
Connection 853 from that Operation 610 to an Operation
610 in a subsequent Layer 854 (i.e. subsequent higher
numbered Layer 854, etc.), and update weights of any other
Connections 853 pointing to the Operation 610 in the
subsequent Layer 854. On the other hand, if substantially
similar Operation 610 is not found, Knowledge Structuring
Unit 520 may insert (i.e. copy, store, etc.) the Operation 610
from Operation List 510 into the corresponding comparative
Layer 854 of Neural Network 850, and create a Connection
853 from the inserted Operation 610 to an Operation 610 in
a subsequent Layer 854 (i.e. subsequent higher numbered
Layer 854, etc.) including assigning an occurrence count to
the new Connection 853, calculating a weight of the new
Connection 853, and updating any other Connections 853
pointing to the Operation 610 in the subsequent Layer 854.
Furthermore, inserting an Operation 610 into a Layer 854 of
Neural Network 850 may also include creating a Connection
853 between the inserted Operation 610 and an Operation
610 in a prior Layer 854 (i.e. prior lower numbered Layer
854, etc.), thereby fully connecting the inserted Operation
610. Creating the Connection 853 between the inserted

US 9,443,192 Bl

141

Operation 610 and an Operation 610 in the prior Layer 854
may be performed after the next Substantial Similarity
Comparison 1010 when the target Operation 610 from the
prior Layer 854 is determined.

In one example, Knowledge Structuring Unit 520 can
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ge and Operation 610ad from Operation List 510
with separate sequences or paths of Operations 610 in the
corresponding Layer 854¢ and Layer 8544d. In the case that
Knowledge Structuring Unit 520 does not find a separate
sequence or path of Operations 610 in anticipatory Layers
854 that substantially match Operation 610ae and Operation
610ad, Knowledge Structuring Unit 520 may insert Opera-
tion 610fe into Layer 854¢ and copy Operation 610ae into
the inserted Operation 610fe, and insert Operation 610fd into
Layer 854d and copy Operation 610ad into the inserted
Operation 610f/d. Knowledge Structuring Unit 520 may also
create Connection 853z between Operation 610fd and an
Operation 610fe with occurrence count of 1 and weight of 1.
Occurrence count and weight can optionally be omitted
since Connection 8537 is the only connection between
Operation 610fd and Operation 610fe. Storing any additional
Operations 610 from Operation List 510 into anticipatory
Layers 854 of Neural Network 850 collectively as separate
sequences or paths follows the same logic or process as the
above-described. Knowledge Structuring Unit 520 can then
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ac from Operation List 510 and Operations 610 in
the corresponding Layer 854c. In the case that Knowledge
Structuring Unit 520 does not find a substantially similar
match, Knowledge Structuring Unit 520 may insert Opera-
tion 610fc into Layer 854¢ and copy Operation 610ac into
the inserted Operation 610fc. Knowledge Structuring Unit
520 may also create Connection 853m between Operation
610fc and Operation 610fd with occurrence count of 1 and
weight of 1. Occurrence count and weight can optionally be
omitted since Connection 853m is the only connection
between Operation 610f/c and Operation 610fd. Knowledge
Structuring Unit 520 can then perform Substantial Similarity
Comparisons 1010 of Operation 610ab from Operation List
510 and Operations 610 in the corresponding Layer 8545. In
the case that Knowledge Structuring Unit 520 finds a
substantially similar match between Operation 610ab and
Operation 610f5, Knowledge Structuring Unit 520 may
create a Connection 853/ between Operation 610/ and
Operation 610fc with occurrence count of 1 and weight of 1.
Knowledge Structuring Unit 520 can then perform Substan-
tial Similarity Comparisons 1010 of Operation 610aa from
Operation List 510 and Operations 610 in the corresponding
Layer 854a. In the case that Knowledge Structuring Unit
520 finds a substantially similar match between Operation
610aa and Operation 610fa, Knowledge Structuring Unit
520 may increase by 1 occurrence count of Connection 8534
between Operation 610fa and Operation 6107b, and calculate
weight of Connection 853% based on its occurrence count as
later described. Knowledge Structuring Unit 520 may also
update weights of any other Connections 853 pointing to
Operation 61075 as later described. As indicated by the up
and down dotted arrows, Operation List 510 can be aligned
differently with Layers 854 of Neural Network 850, thereby
adjusting the split between comparative and anticipatory
Layers 854 in alternate embodiments. Therefore, applying/
storing any additional Operations 610 from Operation List
510 onto/into Layers 854 of Neural Network 850 follows the
same logic or process as the above-described.

Referring to FIG. 37A, FIG. 37B, and FIG. 37C, exem-
plary embodiments of updating weights of Connections 853

10

15

20

25

30

35

40

45

50

55

60

65

142

are illustrated. In some aspects, Knowledge Structuring Unit
520 may apply the most recent Operations 610 from Opera-
tion List 510 onto Neural Network 850 first and the least
recent Operations 610 from Operation List 510 last (i.e.
apply Operations 610 from the most recent one to the least
recent one, etc.), for example. As shown for example in FIG.
37A, Operation 610ga is connected to Operation 610gb and
Operation 610gc by Connection 853/ and Connection 853/,
respectively. Operation 610ga may reside in one Layer 854
of Neural Network 850, whereas, Operation 610gbh and
Operation 610gc may reside in another Layer 854. Each of
Connection 853/ and Connection 853/ may include number
of occurrences and weight. The number of occurrences may
track or store the number of observations that an Operation
610 (or substantially similar Operation 610) was preceded
by another Operation 610 (or substantially similar Operation
610) indicating a connection or relationship between them.
For example, Operation 610ga (or substantially similar
Operation 610 to Operation 610ga) was preceded by Opera-
tion 610gb (or substantially similar Operation 610 to Opera-
tion 610gb) 10 times as indicated in the number of occur-
rences of Connection 853%. Also, Operation 610ga (or
substantially similar Operation 610 to Operation 610ga) was
preceded by Operation 610gc (or substantially similar
Operation 610 to Operation 610gc) 15 times as indicated in
the number of occurrences of Connection 853i. The weight
of Connection 853/ can be calculated or determined as the
number of occurrences of Connection 8537 divided by the
sum of occurrences of all connections (i.e. Connection 853/
and Connection 853/, etc.) pointing to Operation 610ga.
Therefore, the weight of Connection 853/ can be calculated
or determined as 10/(10+15)=0.4, for example. Also, the
weight of Connection 853/ can be calculated or determined
as 15/(10+15)=0.6, for example. Therefore, the sum of
weights of Connection 853/, Connection 853/, and/or any
other Connections 853 pointing to Operation 610ga may
equal to 1 or 100%. As shown for example in FIG. 37B, in
the case that Operation 610gd is inserted and an observation
is made that Operation 610gd precedes Operation 610ga,
Connection 853/ can be created between Operation 610gd
and Operation 610ga. The occurrence count of Connection
853; can be set to 1 and weight determined as 1/(10+15+
1)=0.038. The weights of all other connections (i.e. Con-
nection 853/, Connection 853/, etc.) pointing to Operation
610ga may be updated to account for the creation of
Connection 853;. Therefore, the weight of Connection 853/
can be updated as 10/(10+15+1)=0.385. The weight of
Connection 853/ can also be updated as 15/(10+15+
1)=0.577. As shown for example in FIG. 37C, in the case
that an additional occurrence of Connection 853/ is
observed (i.e. Operation 610gb preceded Operation 610ga,
etc.), occurrence count of Connection 853/ and weights of
all connections (i.e. Connection 853/, Connection 853/, and
Connection 853j, etc.) pointing to Operation 610ga may be
updated to account for this observation. The occurrence
count of Connection 853% can be increased by 1 and its
weight updated as 11/(11+15+1)=0.407. The weight of Con-
nection 853/ can also be updated as 15/(11+15+1)=0.556.
The weight of Connection 853/ can also be updated as
1/(11+15+1)=0.037.

Referring to FIG. 38, an embodiment is illustrated of
Decision-making Unit 540 anticipating Operations 610 or
Instruction Sets 600 utilizing Neural Network 850. In some
aspects, the least recent Operations 610 from Operation List
510 were applied onto Neural Network 850 first and the
most recent Operations 610 from Operation List 510 were
applied onto Neural Network 850 last (i.e. Operations 610

US 9,443,192 Bl

143

were applied from the least recent one to the most recent
one, etc.) in the previously described learning process. In
some implementations, Decision-making Unit 540 can per-
form Substantial Similarity Comparisons 1010 of a number
of most recently used or executed Operations 610 (i.e.
Operation n, Operation n-1, Operation n-2, etc.) from
Operation List 510 with Operations 610 from corresponding
comparative Layers 854 (i.e. Layer n, Layer n—1, Layer n-2,
etc.) of Neural Network 850. If a substantially similar
pattern of most recently used or executed Operations 610
from Operation List 510 is found in comparative Layers 854
of Neural Network 850, subsequent Operations 610 can be
anticipated in Operations 610 (i.e. Operation n+1, Operation
n+2, etc.) from anticipatory Layers 854 (i.e. Layer n+l,
Layer n+2, etc.) of Neural Network 850.

Various techniques, inputs, and/or parameters can be
utilized in selecting Operations 610 in a path through
comparative Layers 854 of Neural Network 850. In some
aspects, Decision-making Unit 540 can start by determining
substantial similarity between an initial Operation 610 (i.e.
Operation n-2, etc.) from Operation List 510 and one or
more Operations 610 (i.e. Operations n-2, etc.) from a
corresponding comparative Layer 854 (i.e. Layer n-2, etc.)
of Neural Network 850. Decision-making Unit 540 can then
perform Substantial Similarity Comparisons 1010 of a next
Operation 610 (i.e. Operation n-1, etc.) from Operation List
510 with one or more Operations 610 (i.e. Operations n-1,
etc.) from a corresponding comparative Layer 854 (i.e.
Layer n-1, etc.) of Neural Network 850, and so on. This is
an example of how Operations 610 from Operation List 510
may be processed or compared from the least recent one to
the most recent one and/or how Neural Network 850 or a
portion thereof can be traversed forward in the decision-
making process. Any Operation 610 from Operation List
510 can be used as the initial one to be compared with
Operations 610 from a corresponding Layer 854 of Neural
Network 850.

In some embodiments, Decision-making Unit 540 may
limit Substantial Similarity Comparisons 1010 to only
include Operations 610 from comparative Layers 854 that
are interconnected by Connections 853. Also, Decision-
making Unit 540 can take into account weights of Connec-
tions 853 among the interconnected Operations 610 in
choosing which Operation 610 to compare first, second,
third, and so on. Specifically, for instance, Decision-making
Unit 540 can perform Substantial Similarity Comparison
1010 with Operation 610 pointed to by the highest weight
Connection 853 first, Operation 610 pointed to by the second
highest weight Connection 853 second, and so on. In some
aspects, Decision-making Unit 540 can stop performing
Substantial Similarity Comparisons 1010 in a particular
Layer 854 as soon as it finds a substantially similar Opera-
tion 610 interconnected as previously described. In other
aspects, Decision-making Unit 540 may only follow the
highest weight Connection 853 to arrive at an Operation 610
to be compared, thereby disregarding Connections 853 with
less than the highest weight.

In other embodiments, Decision-making Unit 540 may
perform Substantial Similarity Comparisons 1010 of an
Operation 610 from Operation List 510 with one or more
interconnected Operations 610 from a corresponding com-
parative Layer 854 of Neural Network 850, and utilize the
previously described Comparison Accuracy index 650 in
deciding which Operation 610 to select in the path through
comparative Layers 854. Comparison Accuracy Index 650
comprises the functionality for storing a measure of how
well an Operation 610 to or with which the index is assigned

10

15

20

25

30

35

40

45

50

55

60

65

144

or associated is matched with another Operation 610. Com-
parison Accuracy Index 650 on a scale of 0-1 can be utilized
instead of the previously described Comparison Accuracy
Index 650 on a scale of 0-10. The scale of 0-1 is preferable
since it corresponds to and is comparable with weights of
Connections 853 that are also on a scale of 0-1. In one
example, Decision-making Unit 540 may select an Opera-
tion 610 having the highest Comparison Accuracy Index 650
from a comparative Layer 854 of Neural Network 850 even
if Connection 853 pointing to that Operation 610 has the
lowest or less than the highest weight. Therefore, Compari-
son Accuracy Index 650 or other similar input or parameter
can override or disregard the weight of' a Connection 853. In
another example, Decision-making Unit 540 may select an
Operation 610 from a Layer 854 of Neural Network 850 if
its Comparison Accuracy Index 650 is higher than or equal
to a weight of its Connection 853. In a further example,
Decision-making Unit 540 may select an Operation 610
from a Layer 854 of Neural Network 850 if a weight of its
Connection 853 is higher than or equal to its Comparison
Accuracy Index 650. Therefore, Comparison Accuracy
Index 650 can be set to be more, less, or equally important
than a weight of a Connection 853. In some aspects, a
minimum Comparison Accuracy Index 650 required for
substantial similarity with respect to an Operation 610 from
a Layer 854 of Neural Network 850 can be set to be different
for various Layers 854. For example, a higher minimum
Comparison Accuracy Index 650 can be set for comparative
Layers 854 comprising the most recently used or executed
Operations 610, and decreased for the remaining compara-
tive Layers 854. Any other settings of a minimum Compari-
son Accuracy Index 650 required for substantial similarity
can be utilized in alternate embodiments.

In further embodiments, Decision-making Unit 540 can
utilize a bias to adjust weight of a Connection 853, Com-
parison Accuracy Index 650, and/or other input or parameter
used in selecting Operations 610 in a path through com-
parative Layers 854 of Neural Network 850. In one example,
Decision-making Unit 540 may select an Operation 610
from a Layer 854 of Neural Network 850 if its Comparison
Accuracy Index 650 multiplied by or adjusted for a bias is
higher than or equal to a weight of its Connection 853. In
another example, Decision-making Unit 540 may select an
Operation 610 from a Layer 854 of Neural Network 850 if
the weight of its Connection 853 multiplied by or adjusted
for a bias is higher than or equal to its Comparison Accuracy
Index 650. In a further example, bias can be used to resolve
deadlock situations where Comparison Accuracy Index 650
is equal to a weight of a Connection 853. In some aspects,
bias can be expressed in percentages such as 0.3 percent, 1.2
percent, 25.7 percent, 79.8 percent, 99.9 percent, 100.1
percent, 155.4 percent, 298.6 percent, 1105.5 percent, and so
on. For example, a bias below 100 percent decreases an
input or parameter to which it is applied, a bias equal to 100
percent does not change the input or parameter to which it
is applied, and a bias higher than 100 percent increases the
input or parameter to which it is applied. In general, any
amount of bias can be utilized. Bias can be applied to one or
more of a weight of a Connection 853, Comparison Accu-
racy Index 650, any other input or parameter, and/or all or
any combination of them. Also, different biases can be
applied to each of a weight of a Connection 853, Compari-
son Accuracy Index 650, or any other input or parameter. For
example, 30 percent bias can be applied to Comparison
Accuracy Index 650 and 15 percent bias can be applied to a
weight of a Connection 853. Also, different biases can be
applied to various Layers 854 of Neural Network 850,

US 9,443,192 Bl

145

and/or other disclosed elements. Bias can be set by a user, by
UAIE administrator, or automatically by the system.

Any other technique, input, and/or parameter can be
utilized in selecting Operations 610 in a path through the
comparative or other Layers 854 of Neural Network 850.

Once the path through comparative Layers 854 of Neural
Network 850 is known, Decision-making Unit 540 may then
utilize highest weight Connections 853 in deciding which
path of Operations 610 to follow through anticipatory Lay-
ers 854 of Neural Network 850, for example. Any of the
previously described techniques, inputs, and/or parameters
such as weights of Connections 853, bias, and/or other
inputs or parameters can be utilized as applicable in select-
ing Operations 610 in the path through anticipatory Layers
854 of Neural Network 850.

Referring to FIG. 39, an exemplary embodiment of select-
ing a path of Operations 610 through Neural Network 850 is
illustrated. Decision-making Unit 540 can receive a current
Operation List 510. Decision-making Unit 540 may first
select a path of Operations 610 through comparative Layers
854 of Neural Network 850. A bias of 110 percent can be
applied to increase Comparison Accuracy Indexes 650 of
Operations 610 in comparative Layers 854 of Neural Net-
work 850, for example. Decision-making Unit 540 can
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ca from Operation List 510 with one or more
Operations 610 in corresponding Layer 854a. Operation
610ca from Layer 854a may be found substantially similar
to Operation 610ca from Operation List 510 with the highest
Comparison Accuracy Index 650 and selected as the initial
Operation 610 in the path. Decision-making Unit 540 can
then perform Substantial Similarity Comparisons 1010 of
Operation 610¢h from Operation List 510 with one or more
Operations 610 in corresponding Layer 8545 connected with
Operation 610ea. Operation 610eb from Layer 8545 may be
found substantially similar to Operation 610cb from Opera-
tion List 510 with the highest Comparison Accuracy Index
650 of 0.48, for example. Operation 610eb is selected as the
next Operation 610 in the path since bias-adjusted Compari-
son Accuracy Index 650 of 0.48%1.1=0.528 is higher than
the highest weight 0.50 of Connection 853v, even though
Connection 853u of Operation 610eb has a lower weight
than Connection 853v. This is an example of how a higher
Comparison Accuracy Index 650 or adjusted Comparison
Accuracy Index 650 can be used to override the highest
weight Connection 853 in choosing an Operation 610 in the
path. Decision-making Unit 540 can then perform Substan-
tial Similarity Comparisons 1010 of Operation 610cc from
Operation List 510 with one or more Operations 610 in
corresponding Layer 854¢ connected with Operation 610eb.
Operation 610ec from Layer 854¢ may be found substan-
tially similar to Operation 610cc from Operation List 510
with the highest Comparison Accuracy Index 650. Operation
610¢c is selected as the next Operation 610 in the path since
the weight of Connection 853w is equal to the only other
Connection 853x originating from Operation 610eb. This is
an example of how Comparison Accuracy Index 650 or
adjusted Comparison Accuracy Index 650 can be used to
resolve a deadlock in equal weights of Connections 853.
Decision-making Unit 540 may then select a path of Opera-
tions 610 through anticipatory Layers 854 of Neural Net-
work 850. Decision-making Unit 540 may follow Connec-
tion 853y with the highest weight leading to Operation
610ed in Layer 854d. Decision-making Unit 540 may then
follow Connection 853z with the highest weight leading to
Operation 610e¢e in Layer 854¢. Decision-making Unit 540
may implement similar logic or process for any additional

10

15

20

25

30

35

40

45

50

55

60

65

146

Operations 610 in any additional Layers 854 beyond Layer
854e. In some aspects, at each selected Operation 610 in the
path through the Layers 854 of Neural Network 850, Deci-
sion-making Unit 540 can append a currently selected
Operation 610 to a collection of previously selected Opera-
tions 610 to assemble a Substantially Similar Path 855 (later
described).

The foregoing provides an example of utilizing a combi-
nation of weights of Connections 853, Comparison Accu-
racy Index 650, and bias. It should be understood that any of
these techniques, inputs, and/or parameters can be omitted,
used in a different combination, or used in combination with
other inputs or parameters, in which case the path of
Operations 610 through Neural Network 850 would be
affected accordingly. In one example, weights of Connec-
tions 853 may not be used at all in selecting a path through
comparative Layers 854, in which case Comparison Accu-
racy Index 650 can be solely utilized for deciding which
Operations 610 to select in the path. In another example,
weights of Connections 853 can be used solely in selecting
a path through anticipatory Layers 854 as previously
described. In a further example, bias can be omitted in
selecting a path through comparative Layers 854, in which
case unadjusted Comparison Accuracy Indexes 650 and/or
weights of Connections 853 can be utilized for deciding
which Operations 610 to select in the path. Any other
techniques, inputs, and/or parameters can be utilized to
affect the choice of Operations 610 in a path through Neural
Network 850. In some aspects, more than one path through
Neural Network 850 can be considered or selected using the
above-described technique or process, in which case Deci-
sion-making Unit 540 may choose the most substantially
similar of the considered or selected paths.

In some embodiments, in the case that Operations 610
from Operation List 510 were stored into Neural Network
850 collectively as separate sequences or paths, Decision-
making Unit 540 can consider multiple possible separate
paths or sequences of Operations 610 in Neural Network
850. In one example, Decision-making Unit 540 can per-
form Substantial Similarity Comparisons 1010 of a number
of most recently used or executed Operations 610 (i.e.
Operation n, Operation n-1, Operation n-2, etc.) from
Operation List 510 with interconnected Operations 610 from
corresponding comparative Layers 854 (i.e. Layer n, Layer
n-1, Layer n-2, etc.) of Neural Network 850. There may
exist multiple separate substantially similar paths since each
path of Operations 610 through comparative Layers 854
includes a separate sequence of Operations 610 that may not
be cross-connected with Operations 610 in other paths.
Decision-making Unit 540 can then select (i.e. using highest
Comparison Accuracy Index 650, etc.) the most substan-
tially similar path from the separate substantially similar
paths. Subsequent Operations 610 can then be anticipated in
the anticipatory Operations 610 (i.e. Operation n+1, Opera-
tion n+2, etc.) of the selected separate substantially similar
path (i.e. Substantially Similar Path 855, etc.).

In another example where Operations 610 from Operation
List 510 were stored into Neural Network 850 collectively
as separate sequences or paths, Decision-making Unit 540
can perform Substantial Similarity Comparisons 1010 of an
initial Operation 610 (i.e, Operation n, etc.) from Operation
List 510 with one or more Operations 610 from a corre-
sponding comparative Layer 854 (i.e. Layer n, etc.) of
Neural Network 850. Decision-making Unit 540 may find
multiple Operations 610 from the corresponding compara-
tive Layer 854 that are substantially similar to the initial
Operation 610 (i.e. Operation n, etc.) from Operation List

US 9,443,192 Bl

147

510. Decision-making Unit 540 can then perform Substan-
tial Similarity Comparisons 1010 of a next Operation 610
(i.e. Operation n-1, etc.) from Operation List 510 with one
or more interconnected Operations 610 from a correspond-
ing comparative Layer 854 (i.e. Layer n-1, etc.) of Neural
Network 850, and so on. This is an example of how
Operations 610 from Operation List 510 may be processed
or compared from the most recent one to the least recent one
and/or how Neural Network 850 or a portion thereof can be
traversed backward in the decision-making process. At each
Substantial Similarity Comparison 1010, if an Operation
610 from a corresponding comparative Layer 854 is found
not to be substantially similar to the compared Operation
610 from Operation List 510, the entire separate sequence or
path comprising the non-matching Operation 610 can be
removed from consideration of being a substantially similar
path. Therefore, each Substantial Similarity Comparison
1010 may reduce the number of potential separate substan-
tially similar paths. At the end of the process, if more than
one separate substantially similar paths remain, Decision-
making Unit 540 can select (i.e. using highest Comparison
Accuracy Index 650, etc.) the most substantially similar path
from the separate substantially similar paths. Subsequent
Operations 610 can then be anticipated in anticipatory
Operations 610 (i.e. Operation n+1, Operation n+2, etc.) of
the selected separate substantially similar path (i.e. Substan-
tially Similar Path 855, etc.). In some designs, similar
techniques as the above-described can be utilized in select-
ing a previously described Substantially Similar Knowledge
Cell 1110.

Referring to FIG. 40, an embodiment of Decision-making
Unit 540 anticipating Operations 610 or Instruction Sets 600
utilizing Neural Network 850 is illustrated. In some aspects,
the most recent Operations 610 from Operation List 510
were stored into Neural Network 850 first and the least
recent Operations 610 from Operation List 510 were applied
onto Neural Network 850 last (i.e. Operations 610 were
applied from the most recent one to the least recent one, etc.)
in the previously described learning process. Also, the most
recent Operations 610 from Operation List 510 were stored
into corresponding anticipatory Layers 854 of Neural Net-
work 850 collectively as separate sequences or paths, and
the least recent Operations 610 from Operation List 510
were applied onto corresponding comparative Layers 854 of
Neural Network 850 individually, for example. In some
implementations, Decision-making Unit 540 can perform
Substantial Similarity Comparisons 1010 of a number of
most recently used or executed Operations 610 (i.e. Opera-
tion n, Operation n-1, Operation n-2, etc.) from Operation
List 510 with Operations 610 from corresponding compara-
tive Layers 854 (i.e. Layer n, Layer n—1, Layer n-2, etc.) of
Neural Network 850. If a substantially similar pattern of
most recently used or executed Operations 610 from Opera-
tion List 510 is found in comparative Layers 854 of Neural
Network 850, subsequent Operations 610 can be anticipated
in Operations 610 (i.e. Operation n+1, Operation n+2, etc.)
from anticipatory Layers 854 (i.e. Layer n+l, Layer n+2,
etc.) of Neural Network 850,

Various techniques, inputs, and/or parameters can be
utilized in selecting Operations 610 in a path through
comparative Layers 854 of Neural Network 850. In some
aspects, Decision-making Unit 540 can start by determining
substantial similarity between an initial Operation 610 (i.e.
Operation n, etc.) from Operation List 510 and one or more
Operations 610 (i.e. Operations n, etc.) from a correspond-
ing comparative Layer 854 (i.e. Layer n, etc.) of Neural
Network 850. Decision-making Unit 540 can then perform

25

30

40

45

148

Substantial Similarity Comparisons 1010 of a next Opera-
tion 610 (i.e. Operation n-1, etc.) from Operation List 510
with one or more Operations 610 (i.e. Operations n-1, etc.)
from a corresponding comparative Layer 854 (i.e. Layer
n-1, etc.) of Neural Network 850, and so on. This is an
example of how Operations 610 from Operation List 510
may be processed or compared from the most recent one to
the least recent one and/or how Neural Network 850 or a
portion thereof can be traversed backward in the decision-
making process. Any Operation 610 from Operation List
510 can be used as the initial one to be compared with
Operations 610 from corresponding Layers 854 in Neural
Network 850.

In some aspects, Decision-making Unit 540 may limit
Substantial Similarity Comparisons 1010 to only include
Operations 610 from comparative Layers 854 that are inter-
connected by Connections 853. All features, functionalities,
and embodiments of the previously described Connection
853 can be utilized in such implementations. In other
aspects, Decision-making Unit 540 may perform Substantial
Similarity Comparisons 1010 of an Operation 610 from
Operation List 510 with one or more interconnected Opera-
tions 610 from a corresponding comparative Layer 854 of
Neural Network 850, and utilize the previously described
Comparison Accuracy Index 650 in deciding which Opera-
tion 610 to select in the path through comparative Layers
854 as previously described. In further aspects, Decision-
making Unit 540 can utilize a bias to adjust weight of a
Connection 853, Comparison Accuracy Index 650, and/or
other input or parameter used in selecting Operations 610 in
a path through comparative Layers 854 of Neural Network
850 as previously described. Any other technique, input,
and/or parameter can be utilized in selecting Operations 610
in a path through the comparative or other Layers 854 of
Neural Network 850. In some aspects, more than one path
through comparative Layers 854 of Neural Network 850 can
be considered or selected using the above-described tech-
niques, in which case Decision-making Unit 540 may
choose the most substantially similar of the considered or
selected paths.

Once the path through comparative Layers 854 of Neural
Network 850 is known, Decision-making Unit 540 may then
utilize sole Connections 853 in selecting a separate sequence
or path of Operations 610 through anticipatory Layers 854
of Neural Network 850.

Referring to FIG. 41, an exemplary embodiment of select-
ing a path of Operations 610 through Neural Network 850 is
illustrated. Decision-making Unit 540 can receive a current
Operation List 510. Decision-making Unit 540 may first
select a path of Operations 610 through comparative Layers
854 of Neural Network 850. Weights of Connections 853
may be disregarded (and, therefore, optionally omitted from
the system, etc,) in the selection of a path through Neural
Network 850, for example. A minimum Comparison Accu-
racy Index 650 of 0.84 may be utilized for comparative
Layer 854c, for example. Also, a minimum Comparison
Accuracy index 650 of 0.80 may be utilized for comparative
Layer 8545, for example. Further, a minimum Comparison
Accuracy Index 650 of 0.76 may be utilized for comparative
Layer 854a, for example. Decision-making Unit 540 can
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610cc from Operation List 510 with one or more
Operations 610 in corresponding Layer 854c¢. Operation
610/¢ from Layer 854¢ may be found substantially similar
to Operation 610cc from Operation List 510 with the highest
Comparison Accuracy Index 650 of 0.85, for example.
Operation 610/%c is selected as the initial Operation 610 in

US 9,443,192 Bl

149

the path through comparative Layers 854 since Comparison
Accuracy Index 650 of 0.85 is higher than the minimum
Comparison Accuracy Index 650 of 0.84 required for com-
parative Layer 854¢. Decision-making Unit 540 can then
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ch from Operation List 510 with one or more
Operations 610 in corresponding Layer 8545 connected with
Operation 610/c. Operation 61045 from Layer 8545 may be
found substantially similar to Operation 610cb from Opera-
tion List 510 with the highest Comparison Accuracy Index
650 of 0.82, for example. Operation 610%5 is selected as the
next Operation 610 in the path through comparative Layers
854 since Comparison Accuracy Index 650 of 0.82 is higher
than the minimum Comparison Accuracy index 650 of 0.80
required for comparative Layer 854b. Since weights of
Connections 853 are disregarded in this example, higher
weight of Connection 853g than the weight of Connection
8537 has no effect. Decision-making Unit 540 can then
perform Substantial Similarity Comparisons 1010 of Opera-
tion 610ca from Operation List 510 with one or more
Operations 610 in corresponding Layer 854a. Operation
610/4a from Layer 854a may be found substantially similar
to Operation 610ca from Operation List 510 with the highest
Comparison Accuracy Index 650 of 0.80, for example.
Operation 610/a is selected as the next Operation 610 in the
path through comparative Layers 854 since Comparison
Accuracy Index 650 of 0.80 is higher than the minimum
Comparison Accuracy index 650 of 0.76 required for com-
parative Layer 854c¢. Decision-making Unit 540 may then
select a path of Operations 610 through anticipatory Layers
854 of Neural Network 850. Decision-making Unit 540 may
follow the sole Connection 853s leading to Operation 610/2d
in Layer 854d. Decision-making Unit 540 may then follow
the sole Connection 8537 leading to Operation 610/e in
Layer 854e. Decision-making Unit 540 may implement
similar logic or process for any additional Operations 610 in
any additional Layers 854 beyond Layer 854¢. In some
aspects, at each selected Operation 610 in the path through
the Layers 854 of Neural Network 850, Decision-making
Unit 540 can append a currently selected Operation 610 (i.e.
according to its order or Layer 854 in Neural Network 850,
etc.) to a collection of previously selected Operations 610 to
assemble a Substantially Similar Path 855 (later described).

Referring to FIG. 42, an embodiment of Confirmation
Unit 550 comprising Substantially Similar Path 855 is
illustrated. Confirmation Unit 550 comprises Substantially
Similar Path 855, Context Interpreter 1120, Operation Modi-
fier 1121, User Confirmation 1130, and Operation List 510.
Other additional elements can be included as needed, or
some of the disclosed ones can be excluded, or a combina-
tion thereof can be utilized in alternate embodiments.

Substantially Similar Path 855 comprises the functional-
ity for storing Operations 610 selected in a path through
Neural Network 850, and/or other functionalities. Substan-
tially Similar Path 855 comprises any features, functional-
ities, and embodiments of the previously described Substan-
tially Similar Knowledge Cell 1110. In some embodiments,
a Node 852 comprising an Operation 610 may include a
function (i.e. transformation function, etc.) such as a func-
tion that appends a currently selected Operation 610 to a
collection of previously selected Operations 610 in a path
through Neural Network 850. For example, such append
function can assemble a list or path (i.e. Substantially
Similar Path 855, etc.) of selected Operations 610 while
Decision-making Unit 540 traverses Operations 610 through
the Layers 854 of Neural Network 850.

25

40

45

55

150

In some embodiments, Confirmation Unit 550 can serve
as a means of evaluating or rating anticipatory Operations
610 or instruction Sets 600 if they matched the indented
operation of User 50 as previously described. A rating can be
stored in the rated anticipatory Operation 610 or Instruction
Set 600, in Extra info 630 of the rated anticipatory Operation
610 or Instruction Set 600, in a rated Substantially Similar
Path 855, in a neuron or Node 852 of Neural Network 850,
and/or in other repository for improvement of future antici-
pation or matching. In one example, rating of an Operation
610 or Instruction Set 600 can be associated with and/or
stored in a neuron or Node 852 comprising the rated
Operation 610 or Instruction Set 600 for improvement of
future anticipation or matching. In another example, rating
of an Operation 610 or Instruction Set 600 may affect (i.e.
increase or decrease, etc.) occurrence count and/or weight of
a Connection 853 of a neuron or Node 852 comprising the
rated Operation 610 or Instruction Set 600, thereby adjusting
or fine-tuning the Connection’s 853 ability to anticipate the
rated Operation 610 or Instruction Set 600 in the future. Any
combination of rating and other techniques, inputs, and/or
parameters can also be utilized.

In other embodiments, Confirmation Unit 550 can serve
as a means of canceling anticipatory Operations 610 or
Instruction Sets 600 if they did not match the indented
operation of User 50 as previously described. In one
example, canceling of an Operation 610 or Instruction Set
600 can be recorded and/or affect a particular Operation’s
610 or Instruction Set’s 600 rating, which can be used for
improved anticipation or matching in the future. In another
example, canceling of an Operation 610 or Instruction Set
600 may affect (i.e. reduce) occurrence count and/or weight
of'a Connection 853 of'a neuron or Node 852 comprising the
canceled Operation 610 or Instruction Set 600, thereby
adjusting or fine-tuning the Connection’s 853 ability to
anticipate the canceled Operation 610 or Instruction Set 600
in the future. Any combination of canceling and/or other
techniques, inputs, or parameters can also be utilized.

Confirmation Unit 550 comprising Substantially Similar
Path 855 may include any features, functionalities, and
embodiments of the previously described Confirmation Unit
550 comprising Substantially Similar Knowledge Cell 1110.

Referring to FIG. 43, an embodiment of Knowledge
Structuring Unit 520 learning Instruction Set Portions 620
(also referred to as Inst Set Por 620) utilizing Neural
Network 850 is illustrated. Similar to the previously
described Neural Network 850 comprising Operations 610,
Neural Network 850 comprising instruction Set Portions
620 includes a number of neurons or Nodes 852 intercon-
nected by Connections 853. Instruction Set Portions 620 are
shown instead of Nodes 852 to simplify the illustration as
Node 852 includes Instruction Set Portion 620, for example.
Therefore, Instruction Set Portions 620 and Nodes 852 can
be used interchangeably herein depending on context. Also,
Extra info 630 is not shown to simplify the illustration.
However, it should be understood that a Node 852 may
include Extra Info 630 as Operation 610 may include both
Instruction Set Portions 620 and Extra info 630. Therefore,
learning and other operations with respect to Instruction Set
Portions 620 can be similarly implemented with respect to
Extra Info 630. One of ordinary skill in art will understand
that Node 852 may include other elements and/or function-
alities instead of or in addition to instruction Set Portion 620
or Extra Info 630. In some designs, Neural Network 850
comprises a number of Layers 854 each of which may
include one or more instruction Set Portions 620 and/or
Extra Info 630. Instruction Set Portions 620 or Extra Info

US 9,443,192 Bl

151

630 in successive Layers 854 can be connected by Connec-
tions 853. Connection 853 may include occurrence count
and weight as previously described.

In some embodiments, Knowledge Structuring Unit 520
may apply (i.e. copy, store, etc.) the most recent Instruction
Set Portions 620 (i.e. Instruction Set Portion n, Instruction
Set Portion n-1, etc.) from Operation 610 onto anticipatory
Layers 854 (i.e. Layer n+2, Layer n+l, etc.) of Neural
Network 850 and apply the least recent Instruction Set
Portions 620 (i.e. Instruction Set Portion n-2, Instruction Set
Portion n-3, Instruction Set Portion n-4, etc.) from Opera-
tion 610 onto comparative Layers 854 (i.e. Layer n, Layer
n-1, Layer n-2, etc.) of Neural Network 850, for example.
The term apply or applying may refer to storing, copying,
inserting, or other similar action, therefore, these terms may
be used interchangeably herein depending on context. In
some aspects, the least recent Instruction Set Portions 620
may include front-most Instruction Set Portions 620 of an
Operation 610 and the most recent Instruction Set Portions
620 may include rear-most instruction Set Portions 620 of an
Operation 610. The Operation 610 may include an Operation
610 or Instruction Set 600 that a user is inputting or has
caused to be executed. Specifically, for example, Knowledge
Structuring Unit 520 can apply Instruction Set Portion n
from Operation 610 onto Layer n+2 of Neural Network 850,
apply Instruction Set Portion n-1 from Operation 610 onto
Layer n+1 of Neural Network 850, apply Instruction Set
Portion n-2 from Operation 610 onto Layer n of Neural
Network 850, and so forth. Therefore, Instruction Set Por-
tions 620 with an order number greater than n may become
anticipatory Instruction Set Portions 620 in their respective
anticipatory Layers 854 and the rest of the Instruction Set
Portions 620 may become comparative instruction Set Por-
tions 620 in their respective comparative Layers 854,
although this particular split can differ in alternate embodi-
ments as previously described. Also, as indicated by the up
and down vertical dotted arrows, applying Instruction Set
Portion n from Operation 610 can start at any Layer 854 of
Neural Network 850. This way, the number of comparative
and anticipatory Layers 854 can be adjusted for a particular
application as previously described.

In some embodiments, Knowledge Structuring Unit 520
receives a current Operation 610 and applies/stores front-
most Instruction Set Portions 620 from Operation 610
onto/into Neural Network 850 first and rear-most Instruction
Set Portions 620 from Operation 610 last (i.e. apply/store
Instruction Set Portions 620 from the front-most one to the
rear-most one, etc.), thereby implementing learning of
Instruction Set Portions 620 from Operation 610 as previ-
ously described. In other embodiments, Knowledge Struc-
turing Unit 520 receives a current Operation 610 and
applies/stores rear-most Instruction Set Portions 620 from
Operation 610 onto/into Neural Network 850 first and
front-most Instruction Set Portions 620 from Operation 610
last (i.e. apply/store Instruction Set Portions 620 from the
rear-most one to the front-most one, etc.), thereby imple-
menting learning of Instruction Set Portions 620 from
Operation 610 as previously described. In further embodi-
ments, Knowledge Structuring Unit 520 can apply Instruc-
tion Set Portions 620 from Operation 610 onto Neural
Network 850 individually as previously described. In yet
further embodiments, Knowledge Structuring Unit 520 can
store instruction Set Portions 620 from Operation 610 into
Neural Network 850 collectively as separate sequences or
paths as previously described. Any combination of applying
instruction Set Portions 620 from Operation 610 individu-
ally and storing instruction Set Portions 620 from Operation

20

30

40

45

152

610 collectively onto/into Neural Network 850 can be
implemented in alternate embodiments as previously
described.

Referring to FIG. 44, an embodiment of Decision-making
Unit 540 anticipating Instruction Set Portions 620 utilizing
Neural Network 850 is illustrated. In some aspects, Deci-
sion-making Unit 540 can perform Substantial Similarity
Comparisons 1010 of a number of most recent Instruction
Set Portions 620 (i.e. Instruction Set Portion n, Instruction
Set Portion n-1, Instruction Set Portion n-2, etc.) from
Operation 610 with Instruction Set Portions 620 from cor-
responding comparative Layers 854 (i.e. Layer n, Layer n—1,
Layer n-2, etc.) of Neural Network 850. If a substantially
similar pattern of most recent instruction Set Portions 620
from Operation 610 is found in comparative Layers 854 of
Neural Network 850, subsequent Instruction Set Portions
620 can be anticipated in Instruction Set Portions 620 (i.e.
Instruction Set Portion n+1, Instruction Set Portion n+2,
etc.) from anticipatory Layers 854 (i.e. Layer n+l, Layer
n+2, etc.) of Neural Network 850. Therefore, Neural Net-
work 850 comprising Instruction Set Portions 620 can be
utilized to anticipate Instruction Set Portions 620 of an
Operation 610. For example, as user is inputting Instruction
Set Portions 620 of an Instruction Set 600 or Operation 610
such as a SQL statement (i.e. in a manual or form-based
database application, etc.), Decision-making Unit 540 can
anticipate one or more most likely subsequent Instruction
Set Portions 620 that the user may want to use or input. A
similar technique can be used for any type of Operation 610
or Instruction Set 600 of any language or code that may be
used or inputted in portions. It should be noted that n, m,
and/or other such letters or indicia in any of the figures may
be different numbers in different elements even where the
elements are depicted in the same figure. In general, n, m,
and/or other letters or such indicia may follow the immedi-
ate sequence and/or context where they are indicated. There-
fore, an Instruction Set Portion 620 from Operation 610
having same letter(s) or indicia as an Instruction Set Portion
620 from Neural Network 850 may be a different instruction
Set Portion 620. Also, Instruction Set Portions 620 in a same
Layer 854 may be different Instruction Set Portions 620
belonging to that Layer 854.

Any of'the previously described techniques, inputs, and/or
parameters can be utilized in selecting Instruction Set Por-
tions 620 in a path through comparative Layers 854 of
Neural Network 850. In some embodiments, Decision-
making Unit 540 can start by determining substantial simi-
larity between an initial Instruction Set Portion 620 (i.e.
Instruction Set Portion n-2, etc.) from Operation 610 and
one or more Instruction Set Portions 620 (i.e. instruction Set
Portion n-2, etc.) from a corresponding comparative Layer
854 (i.e. Layer n-2, etc.) of Neural Network 850, and
traverse the comparative Layers 854 forward as previously
described. In other embodiments, Decision-making Unit 540
can start by determining substantial similarity between an
initial Instruction Set Portion 620 (i.e. Instruction Set Por-
tion n, etc.) from Operation 610 and one or more Instruction
Set Portions 620 (i.e. Instruction Set Portion n, etc.) from a
corresponding comparative Layer 854 (i.e. Layer n, etc.) of
Neural Network 850, and traverse the comparative Layers
854 backward as previously described. Any Instruction Set
Portion 620 from Operation 610 can be used as the initial
one to be compared with Instruction Set Portions 620 from
corresponding Layers 854 in Neural Network 850. In further
embodiments, Decision-making Unit 540 may limit Sub-
stantial Similarity Comparisons 1010 to only include
Instruction Set Portions 620 from comparative Layers 854

US 9,443,192 Bl

153

that are interconnected by Connections 853. All features,
functionalities, and embodiments of the previously
described Connection 853 can be utilized in such imple-
mentations. In further embodiments, Decision-making Unit
540 may perform Substantial Similarity Comparisons 1010
of an Instruction Set Portion 620 from Operation 610 with
one or more interconnected Instruction Set Portions 620
from a corresponding comparative Layer 854 of Neural
Network 850, and utilize the previously described Compari-
son Accuracy Index 650 in deciding which Instruction Set
Portions 620 to select in the path through comparative
Layers 854 as previously described. In further embodiments,
Decision-making Unit 540 can utilize a bias to adjust weight
of a Connection 853, Comparison Accuracy Index 650,
and/or other input or parameter used in selecting Instruction
Set Portions 620 in a path through the comparative Layers
854 of Neural Network 850 as previously described. Any
other technique, input, and/or parameter can be utilized in
selecting Instruction Set Portions 620 in a path through the
comparative or other Layers 854 of Neural Network 850.

Once the path through comparative Layers 854 of Neural
Network 850 is known, Decision-making Unit 540 may
utilize highest weight Connections 853 in deciding which
path of instruction Set Portions 620 to follow through
anticipatory Layers 854 of Neural Network 850. Also, in the
case that Instruction Set Portions 620 in anticipatory Layers
854 of Neural Network 850 were stored as separate
sequences or paths, Decision-making Unit 540 may utilize
sole Connections 853 in selecting a separate sequence or
path of Instruction Set Portions 620 through anticipatory
Layers 854 of Neural Network 850. Any of the previously
described techniques, inputs, and/or parameters such as
weights of Connections 853, bias, and/or other inputs or
parameters can be utilized as applicable in selecting Instruc-
tion Set Portions 620 in the path through the anticipatory
Layers 854 of Neural Network 850.

Neural Network 850 comprising Instruction Set Portions
620 includes any features, functionalities, and embodiments
of the previously described Neural Network 850 comprising
Operations 610. Also, the operation of Knowledge Structur-
ing Unit 520, Decision-making Unit 540, Confirmation Unit
550, and/or other elements with respect to Neural Network
850 comprising Instruction Set Portions 620 similarly
includes any features, functionalities, and embodiments of
the previously described operation of Knowledge Structur-
ing Unit 520, Decision-making Unit 540, Confirmation Unit
550, and/or other elements with respect to Neural Network
850 comprising Operations 610.

Referring to FIG. 45, the illustration shows an embodi-
ment of a method 7100 for autonomous application operat-
ing based on UAIE functionalities. The method can there-
fore be used on a computing device to enable autonomous
operation of the application with partial, minimal, or no user
input. In some embodiments, the method can be used on a
computing device operating an interface for UAIE that
enables autonomous operation of the application with par-
tial, minimal, or no user input. Method 7100 may include
some or all the actions, operations, and embodiments of the
previously described method 6100. Due to similarity in
some aspects of method 7100 and method 6100, the forth-
coming description of method 7100 will be directed to
differences between the two methods. Method 7100 may
also include any action or operation of any of the other
disclosed methods such as, for example, methods 7200,
7300, 7400, and/or others. Other additional steps, actions, or
operations can be included as needed, or some of the

10

15

20

25

30

35

40

45

50

55

60

65

154

disclosed ones can be optionally omitted, or a different order
thereof can be implemented in alternate embodiments of
method 7100.

At step 7105, a first instruction set and a second instruc-
tion set are received, the first and the second instruction sets
for performing operations on a computing device. Step 7105
may include any action or operation described in step 6105
of method 6100 as applicable, wherein, neural network (i.e.
Neural Network 850, etc.) can be utilized instead of knowl-
edgebase (i.e. Knowledgebase 530, etc.).

At step 7110, the first and the second instruction sets are
disassembled into instruction set portions. Step 7110 may
include any action or operation described in step 6110 of
method 6100 as applicable, wherein, neural network can be
utilized instead of knowledgebase.

At step 7115, the first and the second instruction sets, or
at least one of their portions, are stored into a neural network
comprising a plurality of instruction sets or their portions.
Step 7115 may include any action or operation described in
step 6115 of method 6100 as applicable, wherein, neural
network can be utilized instead of knowledgebase. In some
implementations, the first and the second instruction sets, or
at least one of their portions, can be stored in the neural
network so that the first instruction set or at least one of its
portions is followed by the second instruction set or at least
one of its portions. In other implementations, no such
arrangement or relationship between the first and the second
instruction sets, or at least one of their portions, is required,
and the first and the second instruction sets, or at least one
of their portions, can be stored in any other arrangement in
the neural network. In some aspects, neural network (i.e.
Neural Network 850, etc.) comprises a number of neurons or
nodes (i.e. Nodes 852, etc.) interconnected by connections
(i,e. Connections 853, etc,). A neuron or node may include
an instruction set (i.e. Instruction Set 600, etc.), instruction
set portion (i.e. Instruction Set Portion 620, etc.), and/or
other element or data, for example. In some designs, neural
network comprises a number of layers (i.e. Layers 854, etc.)
each of which may include one or more neurons or nodes.
In an embodiment of a layered configuration, neurons or
nodes in successive layers can be connected by connections.
In general, any neurons or nodes can be connected by
connections with any other neurons or nodes in alternate
embodiments. A connection may include or be associated
with occurrence count and weight, for example, although
other parameters or variables can be utilized. For example,
a list (i.e. Operation List 510, etc.) of recently executed
instruction sets and/or their portions can be applied onto a
neural network, thereby implementing learning of the
instruction sets and/or their portions. Substantial similarity
comparisons (i.e. Substantial Similarity Comparisons 1010,
etc.) can be performed of an instruction set in the list of
recently executed instruction sets with one or more instruc-
tion sets in a corresponding layer of the neural network. If
substantially similar instruction set is found in the corre-
sponding layer, occurrence count and weight of connection
to that instruction set from an instruction set in a prior layer
can be updated. Any other connections of the instruction set
in the prior layer may also be updated. On the other hand, if
a substantially similar instruction set is not found, the
instruction set from the list of recently executed instruction
sets can be inserted (i.e. copied, stored, etc.) into the
corresponding layer of the neural network, and a connection
to that instruction set can be created from an instruction set
in a prior layer including assigning an occurrence count to
the new connection and calculating a weight of the new
connection. Any other connections of the instruction set in

US 9,443,192 Bl

155

the prior layer may be updated. Furthermore, inserting an
instruction set into a layer of neural network may also
include creating a connection between the inserted instruc-
tion set and an instruction set in a subsequent layer, thereby
fully connecting the inserted instruction set. Creating the
connection between the inserted instruction set and an
instruction set in the subsequent layer can be performed after
the next substantial similarity comparison when the target
instruction set from the subsequent layer is determined. In
some aspects, the most recent instruction sets (i.e. the second
instruction set, etc.) or their portions from a list of recently
executed instruction sets can be applied onto anticipatory
layers of neural network and the least recent instruction sets
(i.e. the first instruction set, etc.) or their portions can be
applied onto comparative layers. Therefore, the most recent
instruction sets (i.e. the second instruction set, etc.) from the
list of recently executed instruction sets may become antici-
patory instruction sets in the neural network, whereas, the
least recent instruction sets (i.e. the first instruction set, etc.)
from the list of recently executed instruction sets may
become comparative instruction sets in the neural network.
Any of the disclosed storing of instruction sets can also be
implemented to store instruction set portions, extra infor-
mation, and/or any other data or items into the neural
network. Storing comprises any action or operation by or for
a Neural Network 850, Operation List 510, Knowledge
Structuring Unit 520, and/or other disclosed elements.

At step 7120, a new instruction set for performing an
operation on the computing device is received. Step 7120
may include any action or operation described in step 7105
or step 6120 of method 6100 as applicable, wherein, neural
network can be utilized instead of knowledgebase.

At step 7125, the new instruction set is disassembled into
instruction set portions. Step 7125 may include any action or
operation described in step 7110 or step 6125 of method
6100 as applicable, wherein, neural network can be utilized
instead of knowledgebase.

At step 7130, at least one portion of the new instruction
set are compared with at least one portion of the first
instruction set from the neural network. Step 7130 may
include any action or operation described in step 6130 of
method 6100 as applicable, wherein, neural network can be
utilized instead of knowledgebase. The first instruction set
may be one of plurality of instruction sets stored in the
neural network whose portions can be compared with por-
tions of the new instruction set. In some aspects, the at least
one portion of the new instruction set can be compared with
the at least one portion of instruction sets in comparative
layers of the neural network. In one example, substantial
similarity comparisons (i.e. Substantial Similarity Compari-
sons 1010, etc.) can be performed of a number of most
recently used or executed instruction sets (i.e. new instruc-
tion set, etc.) and/or their portions from a list (i.e. Operation
List 510, etc.) of recently executed instruction sets with
instruction sets (i.e. first instruction set, etc.) and/or their
portions from corresponding comparative layers (i.e. Layers
854, etc.) of the neural network (i.e. Neural Network 850,
etc.). In another example, substantial similarity comparisons
can be performed of a number of most recently used or
executed instruction sets and/or their portions from a list of
recently executed instruction sets with interconnected
instruction sets and/or their portions from corresponding
comparative layers of the neural network. If a substantially
similar pattern of most recently used or executed instruction
sets from the list of recently executed instruction sets is
found in comparative layers of the neural network, subse-
quent instruction sets can be anticipated in instruction sets

20

25

30

40

45

156

(i.e. second instruction set, etc.) from anticipatory layers of
the neural network. A substantially similar path (i.e. Sub-
stantially Similar Path 855, etc.) may include the instruction
sets selected in a path through the comparative and/or
anticipatory layers of the neural network.

At step 7135, a determination is made that there is a
substantial similarity between the new instruction set and the
first instruction set from the neural network. Step 7135 may
include any action or operation described in step 6135 of
method 6100 as applicable, wherein, neural network can be
utilized instead of knowledgebase.

At step 7140, the second instruction set from the neural
network or at least one of its portions are modified based on
context analysis. Step 7140 may include any action or
operation described in step 6140 of method 6100 as appli-
cable, wherein, neural network can be utilized instead of
knowledgebase.

At step 7145, the second or the modified second instruc-
tion set from the neural network is executed on the com-
puting device. Step 7145 may include any action or opera-
tion described in step 6145 of method 6100 as applicable,
wherein, neural network can be utilized instead of knowl-
edgebase.

At step 7150, the executed second or modified second
instruction set is rated. Step 7150 may include any action or
operation described in step 6150 of method 6100 as appli-
cable, wherein, neural network can be utilized instead of
knowledgebase. In some aspects, rating of an instruction set
can be associated with or stored in a neuron or node
comprising the instruction set for improvement of future
anticipation or matching. In other aspects, rating of an
instruction set may affect (i.e. increase or decrease, etc.)
occurrence count and/or weight of a connection of the
neuron or node comprising the instruction set, thereby
adjusting or fine-tuning the connection’s ability to anticipate
the instruction set in the future.

At step 7155, the execution of the executed second or
modified second instruction set is canceled and the comput-
ing device is restored to a prior state. Step 7155 may include
any action or operation described in step 6155 of method
6100 as applicable, wherein, neural network can be utilized
instead of knowledgebase. In some aspects, canceling of an
instruction set can be associated with or stored in a neuron
or node comprising the instruction set for improvement of
future anticipation or matching. In other aspects, canceling
an instruction set may affect (i.e. decrease, etc.) occurrence
count and/or weight of a connection of the neuron or node
comprising the instruction set, thereby adjusting or fine-
tuning the connection’s ability to anticipate the instruction
set in the future.

Referring to FIG. 46, the illustration shows an embodi-
ment of a method 7200 for autonomous application operat-
ing based UAIE functionalities. The method can therefore be
used on a computing device to enable autonomous operation
of the application with partial, minimal, or no user input. In
some embodiments, the method may be used on a computing
device operating an interface for UAIE that enables autono-
mous operation of the application with partial, minimal, or
no user input. Method 7200 may include any action or
operation of any of the disclosed methods such as, for
example, methods 7100, 7300, 7400, and/or others. Other
additional steps, actions, or operations can be included as
needed, or some of the disclosed ones can be optionally
omitted, or a different order thereof can be implemented in
alternate embodiments of method 7200.

Steps 7205-7235 may include any action or operation
described in steps 7105-7135 of method 7100 as applicable.

US 9,443,192 Bl

157

At step 7240, the new instruction set is executed on the
computing device. Step 7240 may include any action or
operation described in step 7145 of method 7100 as appli-
cable. In some embodiments, the new instruction set can be
executed earlier in the process such as when it is received by
UAIE. In other embodiments, the new instruction set can be
executed before it is received by UAIE or at any point
independent of when it is received by UAIE in which case
step 7240 can be omitted.

At step 7245, the second instruction set from the neural
network or at least one of its portions are modified based on
context analysis. Step 7245 may include any action or
operation described in step 7140 of method 7100 as appli-
cable.

At step 7250, the second or the modified second instruc-
tion set from the neural network, or its portions, are dis-
played on the computing device as options to be selected,
further modified, or canceled. In some embodiments, the
previously automatically modified (if this functionality was
enabled and/or if modification was performed, etc.) second
instruction set, a copy thereof, and/or its portions can be
displayed on the computing device responsive to the deter-
mination at step 7235. In some aspects, the previously
automatically modified second instruction set, a copy
thereof, and/or its portions can be displayed along with one
or more anticipatory instruction sets and/or their portions
that may immediately follow the second instruction set. The
system may include an editor, graphical user interface
(GUI), and/or other means through which a user can view
and/or manually modify, if user chooses, the previously
automatically modified second instruction set and/or its
portions. For example, a GUI can be utilized to receive or
read the previously automatically modified second instruc-
tion set and/or its portions, display (i.e. via text fields,
drop-down menus, check boxes, and other GUI components,
etc.) the previously automatically modified second instruc-
tion set and/or its portions, and ask the user to manually
modify the previously automatically modified second
instruction set and/or its portions by manipulating GUI
components (i.e. changing values in text fields, selecting
options in drop-down menus, etc.). In some embodiments,
extra or contextual information, and/or other information
can be displayed and/or modified by the user as well. In
some aspects, user selection of the previously automatically
modified second instruction set may effectively serve as
user’s confirmation of his/her intention to execute the pre-
viously modified second instruction set. In other aspects, the
user may choose not to approve or implement (i.e. cancel,
etc.) any anticipatory instruction sets including the previ-
ously modified second instruction set. In yet other aspects,
the user may choose to approve or implement some of the
anticipatory instruction sets including the previously modi-
fied second instruction set, and choose not to approve or
implement (i.e. cancel, etc.) others. Depending on the type
of application and/or other factors, displaying, selecting,
further modifying, and/or canceling can optionally be dis-
abled or omitted in order to provide an uninterrupted opera-
tion of the application. For example, a form based applica-
tion may be suitable for implementing the user confirmation
step, whereas, a game is less suitable for implementing such
interrupting step due to the real time nature of game playing/
execution. Components and/or features of the computing
device or its operating system such as display, keyboard,
pointing device, touchscreen, microphone, camera, video
camera, speech recognition, sound player, video player,
tactile input/output device, and/or other components, fea-
tures, or applications can be utilized to implement the

10

15

20

25

30

35

40

45

50

55

60

65

158

displaying, selecting, further modifying, and/or canceling of
the previously automatically modified second instruction set
and/or its portions. Displaying, selecting, further moditying,
and/or canceling comprise any action or operation by or for
Confirmation Unit 550, and/or other disclosed elements. In
some aspects, step 7250 may include any action or operation
described in steps 7150 and 7155 of method 7100 as
applicable.

At step 7255, the second or the modified second instruc-
tion set from the neural network is executed on the com-
puting device. Step 7255 may include any action or opera-
tion described in step 7145 of method 7100 as applicable.

Referring to FIG. 47, the illustration shows an embodi-
ment of a method 7300 for learning an application’s opera-
tions based UAIE functionalities. The method can therefore
be used on a computing device to structure and/or store
knowledge of an application’s operations that can be used
for anticipation of the application’s future operations or
autonomous application operating. In some embodiments,
the method can be used on a computing device operating an
interface for UAIE to structure and/or store knowledge of an
application’s operations that can be used for anticipation of
the application’s future operations or autonomous applica-
tion operating. Method 7300 may include any action or
operation of any of the disclosed methods such as, for
example, methods 7100, 7200, 7400, and/or others. Other
additional steps, actions, or operations can be included as
needed, or some of the disclosed ones can be optionally
omitted, or a different order thereof can be implemented in
alternate embodiments of method 7300.

At step 7305, a plurality of recently executed instruction
sets are received, the plurality of recently executed instruc-
tion sets comprise instruction sets executed immediately
prior to and including a currently executed instruction set,
the plurality of recently executed instruction sets for per-
forming operations on a computing device. At step 7310, at
least one extra information associated with the plurality of
recently executed instruction sets are received. At step 7315,
the plurality of recently executed instruction sets are disas-
sembled into instruction set portions. At step 7320, portions
of' the least recently executed instruction sets of the plurality
of recently executed instruction sets are stored into nodes of
comparative layers of a neural network and portions of the
most recently executed instruction sets of the plurality of
recently executed instruction sets are stored into nodes of
anticipatory layers of the neural network. At step 7325, the
at least one extra information associated with the least
recently executed instruction sets are stored into the nodes of
comparative layers of the neural network and the at least one
extra information associated with the most recently executed
instruction sets are stored into the nodes of anticipatory
layers of the neural network.

Referring to FIG. 48, the illustration shows an embodi-
ment of a method 7400 for anticipating an application’s
operations based UAIE functionalities. The method can
therefore be used on a computing device to anticipate an
application’s operations from stored knowledge of the appli-
cation’s operations. In some embodiments, the method can
be used on a computing device operating an interface for
UALIE to anticipate an application’s operations from stored
knowledge of the application’s operations. Method 7400
may include any action or operation of any of the disclosed
methods such as, for example, methods 7100, 7200, 7300,
and/or others. Other additional steps, actions, or operations
can be included as needed, or some of the disclosed ones can
be optionally omitted, or a different order thereof can be
implemented in alternate embodiments of method 7400.

US 9,443,192 Bl

159

At step 7405, a neural network is accessed that stores
portions of comparative instruction sets and portions of
anticipatory instruction sets, the neural network comprising
a plurality of portions of comparative instruction sets and
portions of anticipatory instruction sets, the neural network
further stores at least one extra information associated with
the comparative instruction sets and at least one extra
information associated with the anticipatory instruction sets,
wherein the comparative and the anticipatory instruction sets
for performing operations on a computing device. At step
7410, new instruction sets for performing operations on the
computing device are received. At step 7415, at least one
extra information associated with the new instruction sets
are received. At step 7420, portions of the new instruction
sets are compared with the portions of the comparative
instruction sets in the neural network. At step 7425, at least
one extra information associated with the new instruction
sets are compared with at least one extra information asso-
ciated with the comparative instruction sets in the neural
network. At step 7430, a determination is made that there is
a substantial similarity between one or more new instruction
sets and one or more comparative instruction sets in the
neural network. At step 7435, one or more anticipatory
instruction sets in the neural network are anticipated.

Referring to FIG. 49, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a web browser. Such
embodiments may include artificial intelligence that enables
a personal computer or other such device or application to
learn the operation of the web browser, store this knowledge
in a knowledgebase, neural network, or other repository, and
enable autonomous operation of the web browser with
partial, minimal, or no user input to help the user in his/her
use of the web browser.

UAIE can be used on a Personal Computer 70 (i.e.
Computing Device 70, etc.). Personal Computer 70 may
include Web Browser 120 (i.e. Software Application 120,
etc.), UAIE, Acquisition and Modification Interface 110,
Artificial Intelligence Unit 130, Human-machine Interface
23, Display 21, Memory 12, and Storage 27. Other addi-
tional elements may be included as needed, or some of the
disclosed ones may be excluded, or a combination thereof
may be utilized in alternate embodiments.

Personal Computer 70 comprises the functionality for
performing computing or processing operations, and/or
other functionalities. Examples of Personal Computer 70
include a desktop computer, a mobile computer such as a
laptop or tablet computer, computing capable cellular tele-
phone (i.e. smartphone, etc.), server, and/or other computers.
Personal Computer 70 can be referred to as and comprises
any features, functionalities, and embodiments of Comput-
ing Device 70.

In some aspects, Web Browser 120 comprises the func-
tionality for performing web browsing operations on Per-
sonal Computer 70, and/or other functionalities. Web
Browser 120 comprises the functionality for accessing,
presenting, navigating, and/or executing information. Web
Browser 120 comprises the functionality for accessing,
presenting, navigating, and/or executing information acces-
sible over a network. UAIE can attach to and obtain Web
Browser’s 120 instructions, data, and/or other information
and modify execution and/or functionality of Web Browser
120, thereby providing artificial intelligence functionalities
to Web Browser 120 as previously described. Information
may include web pages, files, digital repositories, programs,
databases, and/or other information or resources. Examples
of Web Browsers 120 include Mozilla Firefox, Google

25

35

40

45

55

160

Chrome, Netscape Navigator, Microsoft Internet Explorer,
and others. Information that Web Browser 120 may access,
present, navigate, and/or execute can be stored in files,
objects, data structures, and/or other such repositories, or in
a database, DBMS, server, and/or other such system or
repository. A web page, as the most common information
format for Web Browsers 120, comprises the functionality
for storing information readable by Web Browser 120 or by
other software application, device, or system able to read
web pages. In one example, a web page can be stored in a
file that resides on a Remote Computing Device 1310
accessible over a Network 1300. In another example, a web
page can be stored in a file that resides on Personal Com-
puter 70. In yet another example, a web page can be
dynamically created by a program and delivered over a
network. Examples of web page formats and/or programs
that may dynamically create web pages include HTML,
XML, DHTML, Java Script, Perl, PhP, Ruby, and others. A
web page may include any type of information or content
readable by Web Browser 120 such as, for example, textual
information, graphical information, sound, video, and/or
other information or content readable by Web Browser 120.
Web Browser 120 may reside on User’s 50 Personal Com-
puter 70 or reside on a Remote Computing Device 1310
accessible over a Network 1300, and if on a Remote
Computing Device 1310, Web Browser 120 may be avail-
able as a network service (i.e. online web or information
browser, etc.). User 50 can operate Web Browser 120 via
Human-machine Interface 23, and/or other input device.
Web Browser 120 can be referred to as and comprises any
features, functionalities, and embodiments of Software
Application 120.

In one example, when User 50 wishes to view a web page
on Personal Computer 70, User 50 may issue an operating
instruction to Web Browser 120 via Human-machine Inter-
face 23 (i.e. keyboard, etc.) to present the web page. Web
browser can then retrieve the web page or a reference thereto
from Memory 12, Storage 27, Remote Computing Device
1310, or other repository and present it to User 50. In
another example, when User 50 wishes to change the view
of a particular web page, User 50 may issue an operating
instruction to Web Browser 120 via Human-machine Inter-
face 23 (i.e. mouse, etc.) to scroll the view of the web page.
In yet another example, when User 50 wishes to find
information in a particular web page, User 50 may issue an
operating instruction to Web Browser 120 via Human-
machine Interface 23 to search (i.e. text search, etc.) for
needed information. Various other operating instructions
and/or operations can be implemented in Web Browser 120
examples of which include changing text size, zooming in or
out, clicking a link, clicking a button, saving a web page,
selecting and/or copying a portion of a web page, creating/
deleting/editing a bookmark, operating an application within
a web browser, viewing or editing information in a web
browser, playing/pausing/stopping/rewinding/fast forward-
ing sound or video, increasing or decreasing volume of
sound, and/or other web browser instructions and/or opera-
tions. UAIE can learn Web Browser’s 120 instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.) used to implement
operations such as web page presenting, scrolling, search-
ing, and/or other operations by storing the instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.) in Knowledgebase
530, Neural Network 850, or other repository, and anticipate
future instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) as previously described.

US 9,443,192 Bl

161

In some exemplary embodiments, Personal Computer 70
comprises a smartphone such as Apple’s iPhone, Samsung’s
Galaxy, or other smartphone, or a tablet such as Apple’s
iPad, Samsung’s Galaxy Tab, or other tablet. In one
example, User 50 may wish to visit a Youtube web page
containing Frank Sinatra’a music video such as a web page
at “http://www.youtube.com/watch?v=h9ZGKALMMuc”.
User 50 may then want to increase sound volume by 3 units
for each of the stereo, surround sound, or other sound
channels. User 50 may then want to scroll down the view of
the web page by 5 units to fit the entire area of the video on
his/her device’s display. While listening to the music, User
50 may want to read more information about Frank Sinatra.
User 50 may then decide to create a new tab and visit official
Frank Sinatra web page at “http://www.sinatra.com”. User’s
operations may result or be implemented by corresponding
Web Browser’s 120 instructions such as, for example, the
following:

loadPage(“http://www.youtube.com/

watch?v=h9ZGKALMMuc”, activeWindow.tabs.ac-
tiveTab);

traceAndModify Application(‘loadPage(“http://www.

youtube.com/watch?v=h9ZGKALMMuc”,
activeWindow.tabs.activeTab);’);

adjustSysSound(mainSoundAdapter, 3, 3);

traceAndModify Application(‘adjustSysSound(main-

SoundAdapter, 3, 3);’);
scrollPage(activeWindow.tabs.activeTab, 5, 0);
traceAndModify Application(‘scrollPage(activeWin-
dow.tabs.activeTab, 5, 0);’);

createNew Tab(“Tab2”);

traceAndModify Application(‘createNew Tab(“Tab2”);’);

loadPage (“http://www.sinatra.com”, activeWindow.tabs.

activeTab);

traceAndModify Application(‘loadPage (“http://www.si-

natra.com”, activeWindow.tabs.activeTab);’);
The above code includes various functions (i.e. loadPage,
adjustSysSound, scrollPage, createNewTab, etc.) of an
application such as Web Browser 120 and an instrumented
call to Acquisition and Modification interface’s 110 function
(i.e. traceAndModityApplication, etc.) that can trace (i.e.
learn prior function call, etc.) and/or modify (i.e. implement
anticipatory instructions, etc.) the application to which
UALIE is attached. In some aspects, obtaining Web Browser’s
120 instructions, data, and/or other information as well as
modifying execution and/or functionality of Web Browser
120 can be implemented in separate functions such as
traceApplication and modifyApplication as previously
described. One of ordinary skill in art will understand that
the above code is not written in any particular language, that
it includes a common function call structure used in many
programming languages, and that other function call struc-
tures are within the scope of this disclosure. One of ordinary
skill in art will also understand that the above code is source
code and that any other code such as bytecode, assembly
code, machine code, and/or any other code can be utilized.
One of ordinary skill in art will also understand that the
above code includes function calls and that various other
granularities of Web Browser 120 instructions can be traced
or utilized such as some or all lines of code, statements,
basic blocks, functions/routines/subroutines, any arbitrary
code segments, and/or any other code segments. As User 50
operates Web Browser 120 in his/her pursuit of browsing
web pages. UAIE can learn Web Browser’s 120 instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) or func-
tions such as the ones in example above including any
contextual information (i.e. Extra Info 630, etc.), and antici-

25

30

40

45

162

pate future instructions (i.e. anticipatory instruction Sets 600
or Operations 610, etc.) as previously described. The next
time User 50 or any user visits same or similar web page (i.e.
any other Frank Sinatra or other Youtube web page, etc.)
and/or performs other operations, Web Browser 120 can
implement one or more of adjusting sound, scrolling the web
page, and/or other operations autonomously. In some
aspects, Decision-making Unit 540 may search fora Knowl-
edge Cell 800 that includes comparative instructions (i.e.
comparative Instruction Sets 600 or Operations 610, etc.)
used to implement one or more operations such as visiting
a web page and increasing volume. Decision-making Unit
540 may find a Substantially Similar Knowledge Cell 1110
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar
Knowledge Cell 1110 may also include anticipatory instruc-
tions (i.e. anticipatory instruction Sets 600 or Operations
610, etc.) used to implement subsequent operations such as
scrolling down, creating a new tab, visiting a web page in the
new tab, and/or other operations. UAIE can then implement
the subsequent operations autonomously based on similar
operations performed in prior similar circumstances. Web
Browser’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) can be stored in a global Knowledge-
base 530 available to other users or web browsers. Any Web
Browser 120 having access to the global Knowledgebase
530 can implement anticipatory instructions (i.e. anticipa-
tory Instruction Sets 600 or Operations 610, etc.).

In another example, User 50 may visit a web page such as
the one containing Frank Sinatra’s music video. At the end
of the music video in this web page, User 50 may decide to
visit or click on a web page containing another Frank
Sinatra’s music video. At the end of the music video in the
second web page, User 50 may want to visit or click on a
third web page containing another Frank Sinatra’s music
video, and so on. As User 50 operates Web Browser 120 in
his/her pursuit of browsing web pages, UAIE can learn Web
Browser’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) used to implement visiting sequential
web pages and/or other operations including any contextual
information (i.e. Extra Info 630, etc.), and anticipate future
instructions (i.e. anticipatory Instruction Sets 600 or Opera-
tions 610, etc.) as previously described. Next time User 50
or any user visits the first web page and/or any of the other
visited web pages, Web Browser 120 can implement sub-
sequent web page visits and/or perform other operations
autonomously. In some aspects, Decision-making Unit 540
may search for a Knowledge Cell 800 that includes com-
parative instructions (i.e. comparative Instruction Sets 600
or Operations 610, etc.) used to implement one or more
operations such as visiting sequential web pages. Decision-
making Unit 540 may find a Substantially Similar Knowl-
edge Cell 1110 that includes such comparative instructions
(i.e. Instruction Sets 600 or Operations 610, etc.). Substan-
tially Similar Knowledge Cell 1110 may also include antici-
patory instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) used to implement subsequent opera-
tions such as visiting additional web pages, and/or other
operations. UAIE can then implement the subsequent opera-
tions autonomously based on similar operations performed
in prior similar circumstances. If the knowledge of Web
Browser’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) that were used to implement User’s 50
operations such as visiting sequential web pages is stored in
a global Knowledgebase 530, any Web Browser 120 having
access to the global Knowledgebase 530 can implement Web

US 9,443,192 Bl

163

Browser’s 120 anticipatory instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.).

In other exemplary embodiments, Personal Computer 70
comprises a laptop or desktop computer, or other computer.
In one example, User 50 can be a professional or other
experienced researcher who uses the Internet as a source of
information. User 50 may conduct research on a topic such
as subcompact car market, or any other topic. User 50 may
decide to input a search phrase such as “subcompact car
market” into a search engine such as google.com, yahoo.
com, any proprietary search engine, or other search engine.
User 50 may then click on various web pages that contain
information on the searched topic and open each of the web
pages in a new tab or window, for example. User 50 may
then highlight keywords, key phrases, or other content of
interest in each of the web pages by utilizing Web Browser’s
120 search/find, highlight, and/or other features or function-
alities. User 50 may also scroll some of the web pages to
view or to draw attention to content of interest. As User 50
operates Web Browser 120 in his/her pursuit of browsing
web pages, UAIE can learn Web Browser’s 120 instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) used to
implement searching, clicking, opening web pages, high-
lighting content of interest, scrolling, and/or other operations
including any contextual information (i.e. Extra Info 630,
etc.). In this and each of the preceding examples, UAIE can
learn Web Browser’s 120 instructions (i.e. Instruction Sets
600 or Operations 610, etc.) and/or contextual information
(i.e. Extra Info 630, etc.) used to implement one or more
operations. The instructions (i.e. Instruction Sets 600, etc.)
can be disassembled into their portions and stored in Opera-
tion 610 or other repository along with any Extra Info 630.
Operation 610 can then be stored in Operation List 510 that
comprises recently used or implemented (i.e. executed, etc.)
Operations 610 or Instruction Sets 600. Knowledge Struc-
turing Unit 520 may create a Knowledge Cell 800 from the
Operation List 510 and store the Knowledge Cell 800 in
Knowledgebase 530, thereby implementing learning of Web
Browser’s 120 operations as previously described. Further-
more, Decision-making Unit 540 may search for a Knowl-
edge Cell 800 that includes comparative instructions (i.e.
comparative Instruction Sets 600 or Operations 610, etc.)
used to implement one or more operations. Decision-making
Unit 540 may find a Substantially Similar Knowledge Cell
1110 that includes such comparative instructions (i.e.
Instruction Sets 600 or Operations 610, etc.). Substantially
Similar Knowledge Cell 1110 may also include anticipatory
instructions (i.e. anticipatory Instruction Sets 600 or Opera-
tions 610, etc.) used to implement subsequent operations.
UAIE can then implement the subsequent operations
autonomously based on similar operations performed in
prior similar circumstances, thereby implementing anticipa-
tion of Web Browser’s 120 operations as previously
described. If the knowledge (i.e. Knowledge Cells 800, etc.)
of Web Browser’s 120 instructions (i.e. Instruction Sets 600
or Operations 610, etc.) that were used to implement pro-
fessional researcher’s operations (i.e. searching for a word
or phrase, visiting web pages in new tabs or windows,
highlighting content of interest, scrolling, etc.) is stored in a
global Knowledgebase 530, any Web Browser 120 having
access to the global Knowledgebase 530 can implement Web
Browser’s 120 anticipatory instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.). The knowledge
of Web Browser’s 120 instructions (i.e. Instruction Sets 600
or Operations 610, etc.) used to implement professional
researcher’s operations can be stored in a private Knowl-
edgebase 530, file, or other repository. UAIE enables a user

5

10

20

25

30

35

40

45

50

55

60

65

164

such as a professional researcher to record his/her knowl-
edge (i.e. his/her research methodology and/or results, etc.)
of searching a particular topic. A user such as a professional
researcher can then sell his/her knowledge (i.e. Knowledge-
base 530 or Knowledge Cells 800 that include his/her her
research methodology and/or results, etc.) to other users who
need to conduct similar research and save time. A user can
sell his/her knowledge (i.e. Knowledgebase 530 or Knowl-
edge Cells 800, etc.) of searching a particular topic under a
commercial or other license. Buyers of the Knowledgebase
530 and/or Knowledge Cells 800 can use them for various
purposes such as professionals can use them for their
business, academicians can use them for their scholarly
work, students can use them for their studies, anyone can use
them to gain information on the researched topic, other
professional researchers can use them as a start of their own
more detailed research, or use them for any other purpose.
A buyer can also load the Knowledgebase 530 or Knowl-
edge Cells 800 into his/her own UAIE. Once loaded, Knowl-
edgebase 530 or Knowledge Cells 800 can be initiated or
activated manually as an executable sequence or automati-
cally through UAIE’s decision making process. Buyer’s
Web Browser 120 can then implement anticipatory instruc-
tions (i.e. anticipatory Instruction Sets 600 or Operations
610, etc.) included in the bought Knowledgebase 530 or
Knowledge Cells 800.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-
edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Web
Browser’s 120 operations as previously described. Further-
more, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Web Browser’s 120
operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a web
browser’s operations and of UAIE functionalities with
respect to web browser, and while all possible embodiments
are too voluminous to describe, other embodiments are
within the scope of this disclosure.

Referring to FIG. 50, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for an operating system.
Such embodiments may include artificial intelligence that
enables a personal computer or other such device or appli-
cation to learn the operation of the operating system, store
this knowledge in a knowledgebase, neural network, or other
repository, and enable autonomous operation of the operat-
ing system with partial, minimal, or no user input to help the
user in his/her use of the operating system.

UAIE can be used on a Personal Computer 70 (i.e.
Computing Device 70, etc.). Personal Computer 70 may

US 9,443,192 Bl

165

include Operating System 120 (i.e. Software Application
120, etc.), UAIE, Acquisition and Modification Interface
110, Artificial Intelligence Unit 130, Human-machine Inter-
face 23, Display 21, Memory 12, and Storage 27. Other
additional elements can be included as needed, or some of
the disclosed ones can be excluded, or a combination thereof
can be utilized in alternate embodiments.

In some aspects, Operating System 120 comprises the
functionality for performing operating system operations on
Personal Computer 70, and/or other functionalities. Operat-
ing System 120 comprises the functionality for providing
system and/or other functionalities as previously described.
UAIE can attach to and obtain Operating System’s 120
instructions, data, and/or other information and modify
execution and/or functionality of Operating System 120,
thereby providing artificial intelligence functionalities to
Operating System 120 as previously described. Operating
System 120 may reside on Personal Computer 70 or on a
Remote Computing Device 1310 accessible over a Network
1300, and if on a Remote Computing Device 1310, Oper-
ating System 120 may be available as a network service as
previously described. User 50 can operate Operating System
120 via Human-machine Interface 23, and/or other input
device.

Operating System 120 can be referred to as and comprises
any features, functionalities, and embodiments of Software
Application 120.

In one example, when User 50 wishes to copy a file on
Personal Computer 70, User 50 can issue an operating
instruction to Operating System 120 via Human-machine
Interface 23 (i.e. mouse, etc.) to copy the file. Operating
System 120 may then access the file or a reference thereto
on a Remote Computing Device 1310 or another remote or
peripheral device, and make a copy of the file in Storage 27,
for example. In another example, when User 50 wishes to
connect to a Remote Computing Device 1310 (i.e. to view
a particular web page on a web server, etc.), Operating
System 120 can enable the connection with the Remote
Computing Device 1310. To enable the connection, Oper-
ating System 120 may access Personal Computer’s 70
network adapter, create new or activate an existing network
connection, support or implement a particular network pro-
tocol, support or manage the exchange of information,
and/or perform other operations. In yet another example,
when User 50 wishes to automatically execute a particular
application at a specific time, User 50 can issue an operating
instruction to Operating System 120 via Human-machine
Interface 23 to schedule the execution of the application via
Operating System’s 120 task scheduler, Various other oper-
ating instructions and/or operations can be implemented in
Operating System 120 examples of which include managing
file or other permissions, managing user accounts, perform-
ing hard drive maintenance, managing and monitoring sys-
tem resources, managing system recovery, managing net-
work connections, managing DBMS/database connections,
file browsing, managing backups, managing system security,
managing software settings and/or information, managing
devices and drivers, managing sound and/or other sensory
inputs or outputs, and/or any other operating system instruc-
tions and/or operations. UAIE can learn Operating System’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc,) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement operations such as file copying, network
connecting, task scheduling, and/or other operations by
storing the instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) and/or contextual information (i.e. Extra Info
630, etc.) in Knowledgebase 530, Neural Network 850, or

5

10

15

20

25

30

35

40

45

50

55

60

65

166

other repository, and anticipate future instructions (i.e.
anticipatory instruction Sets 600 or Operations 610, etc.) as
previously described..

In some exemplary embodiments, Personal Computer 70
comprises a laptop or desktop computer, or other computer.
In one example, User 50 may perform daily, weekly,
monthly, yearly, and/or other periodic file backups. After
performing one or more of these periodic file backups, UAIE
can learn Operating System’s 120 instructions (i.e. Instruc-
tion Sets 600 or Operations 610, etc.) and/or contextual
information (i.e. Extra Info 630, etc.) used to implement the
file backups and their timing (i.e. using time stamp, etc.),
and then perform future file backups autonomously as
previously described. In another example, User 50 may have
a preference for setting specific permissions for newly
created or copied files. After User 50 creates or copies one
or more files, User 50 may access the files’ permissions and
set them to his preference. UAIE can learn Operating
System’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) and/or contextual information (i.e.
Extra Info 630, etc.) used to implement file permissions
settings, and then perform future file permissions settings
autonomously as previously described. In yet another
example, User 50 may prefer to be offline when he/she is not
browsing Internet (i.e. for security reasons, etc). After User
50 launches a web browser and connects to the Internet on
one or more occasions, UAIE may learn Operating System’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement web browser launching and Internet
connecting, and then autonomously perform future Internet
connections following web browser launches as previously
described. In yet another example, User 50 may prefer to
perform certain tasks at certain stages of Operating System’s
120 operation such as checking email at Operating System’s
120 start or virus scanning at Operating System’s 120
shut-down. After User 50 launches an email application (i.e.
Microsoft Outlook, etc.) and/or retrieves email at Operating
System’s 120 start on one or more occasions, UAIE can
learn Operating System’s 120 instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) and/or contextual infor-
mation (i.e. Extra Info 630, etc.) used to implement email
application’s launching and/or email retrieval, and then
autonomously perform future email application launches
and/or email retrieval as previously described. In this and
each of the preceding examples, UAIE can learn Operating
System’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) and/or contextual information (i.e.
Extra Info 630, etc.) used to implement one or more opera-
tions. The instructions (i.e. Instruction Sets 600, etc.) can be
disassembled into their portions and stored in Operation 610
or other repository along with any Extra Info 630. Operation
610 can then be stored in Operation List 510 that comprises
recently used or implemented (i.e. executed, etc.) Operations
610 or Instruction Sets 600. Knowledge Structuring Unit
520 may create a Knowledge Cell 800 from the Operation
List 510 and store the Knowledge Cell 800 in Knowledge-
base 530, thereby implementing learning of Operating Sys-
tem’s 120 operations as previously described. Furthermore,
Decision-making Unit 540 may search for a Knowledge Cell
800 that includes comparative instructions (i.e. comparative
Instruction Sets 600 or Operations 610, etc.) used to imple-
ment one or more operations. Decision-making Unit 540
may find a Substantially Similar Knowledge Cell 1110 that
includes such comparative instructions (i.e. Instruction Sets
600 or Operations 610, etc.). Substantially Similar Knowl-
edge Cell 1110 may also include anticipatory instructions

US 9,443,192 Bl

167

(i.e. anticipatory instruction Sets 600 or Operations 610,
etc.) used to implement subsequent operations. UAIE can
then implement the subsequent operations autonomously
based on similar operations performed in prior similar
circumstances, thereby implementing anticipation of Oper-
ating System’s 120 operations as previously described.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-
edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Operating
System’s 120 operations as previously described. Further-
more, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Operating System’s
120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of an operat-
ing system’s operations and of UAIE functionalities with
respect to operating system, and while all possible embodi-
ments are too voluminous to describe, other embodiments
are within the scope of this disclosure.

Referring to FIG. 51, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a word processing
application (also referred to as text processing application,
word application, or other such references, etc.). Such
embodiments may include artificial intelligence that enables
a personal computer or other such device or application to
learn the operation of the word processing application, store
this knowledge in a knowledgebase, neural network, or other
repository, and enable autonomous operation of the word
processing application with partial, minimal, or no user
input to help the user in his/her use of the word processing
application.

UAIE can be used on a Personal Computer 70 (i.e.
Computing Device 70, etc.). Personal Computer 70 may
include Word Application 120 (i.e. Software Application
120, etc.), UAIE, Acquisition and Modification Interface
110, Artificial Intelligence Unit 130, Human-machine Inter-
face 23, Display 21, Memory 12, and Storage 27. Other
additional elements may be included as needed, or some of
the disclosed ones may be excluded, or a combination
thereof may be utilized in alternate embodiments.

In some aspects, Word Application 120 comprises the
functionality for performing word processing operations on
Personal Computer 70, and/or other functionalities. Word
Application 120 comprises the functionality for text cre-
ation, editing, formatting, printing, publishing, manipula-
tion, and/or other functionalities. Text may include any
character, digit, symbol, and/or other similar item, for
example. Examples of Word Applications 120 include
Microsoft Word, Corel WordPerfect, LibreOffice Writer,
KWord, and/or others. UAIE can attach to and obtain Word

30

35

40

45

50

55

168

Application’s 120 instructions, data, and/or other informa-
tion and modify execution and/or functionality of Word
Application 120, thereby providing ailificial intelligence
functionalities to Word Application 120 as previously
described. Word Application 120 can reside on User’s 50
Personal Computer 70 or on a Remote Computing Device
1310 accessible over a Network 1300, and if on a Remote
Computing Device 1310, Word Application 120 may be
available as a network service. User 50 can operate Word
Application 120 via Human-machine Interface 23, and/or
other input device. Word Application 120 can be referred to
as and comprises any features, functionalities, and embodi-
ments of Software Application 120.

In one example, when User 50 wishes to input a character,
word, phrase, sentence, or another section of text, User 50
can issue an operating instruction to Word Application 120
via Human-machine Interface 23 (i.e. keyboard, etc.) to
input the character, word, phrase, sentence, or another
section of text. In another example, when User 50 wishes to
copy a section of text, User 50 can issue an operating
instruction to Word Application 120 via Human-machine
Interface 23 (i.e. mouse, etc.) to copy the section of text (i.e.
copy from one document into memory for other documents
to access, etc.). In yet another example, when User 50
wishes to paste a previously copied section of text, User 50
can issue an operating instruction to Word Application 120
via Human-machine Interface 23 to paste the section of text
(i.e. access text in memory and deliver into current docu-
ment, etc.). In yet another example, when User 50 wishes to
set formatting (i.e. color, font, spacing, etc.) for a character,
word, phrase, sentence, or another section of text, User 50
can issue an operating instruction to Word Application 120
via Human-machine Interface 23 (i.e. mouse, etc.) to set
formatting for the character, word, phrase, sentence, or
another section of text. In yet another example, when User
50 wishes to set page layout (i.e. portrait, landscape, margin
sizes, etc.), User 50 can issue an operating instruction to
Word Application 120 via Human-machine Interface 23 to
set page layout. Various other operating instructions and/or
operations can be implemented in Word Application 120
examples of which include saving or renaming text files,
printing text or other content, publishing text or other
content, managing Word Application’s 120 settings, man-
aging sound and/or other sensory inputs or outputs, and/or
any other word processing application instructions and/or
operations. UAIE can learn Word Application’s 120 instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.) used
to implement operations such as inputting text, copying text,
pasting text, formatting text, setting page layout, and/or
other operations by storing the instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) and/or contextual infor-
mation (i.e. Extra Info 630, etc.) in Knowledgebase 530,
Neural Network 850, or other repository, and anticipate
future instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) as previously described.

In some exemplary embodiments, Personal Computer 70
comprises a laptop or desktop computer, or other computer.
In one example, User 50 may want to copy a section of text
from a first to a second document where each of the
documents has different text formatting. User 50 may select
and copy (i.e. copy into memory or cache, etc.) the section
of text from the first document, and paste it into the second
document. User may then reformat the pasted section of text
to conform to the formatting of the second document. UAIE
can learn Word Application’s 120 instructions (i.e. Instruc-
tion Sets 600 or Operations 610, etc.) and/or contextual

US 9,443,192 Bl

169

information (i.e. Extra Info 630, etc.) used to implement the
copying, pasting, reformatting, and/or other operations.
UALIE can also learn contextual information (i.e. Extra Info
630, etc.) such as, for example, formatting of the text around
the pasted text in the second document prior to and after the
reformatting of the pasted text. UAIE can then perform
future reformatting (i.e. that follows copying and/or pasting,
etc.) autonomously as previously described. In another
example, User 50 may have different preferences for page
settings for various types of documents such as personal
letters, business correspondence, official correspondence,
and/or other types of documents. After User 50 creates one
or more of the different types of text documents, User 50
may adjust page settings to his/her preference for each type
of document. UAIE can learn Word Application’s 120
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement operations such as adjusting page set-
tings, and perform future adjusting of page settings autono-
mously as previously described.

In yet another example, Personal Computer 70 may be a
network connected computer. Word Application 120 may
include or access a Knowledgebase 530, which comprises
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) implementing past Word Application’s 120 operations
(i.e. prior written text, formatting, editing, etc.). Either or
both Word Application 120 and Knowledgebase 530 can be
stored in Personal Computer’s 70 Memory 12, Storage 27,
and/or other local repository, or on a Remote Computing
Device 1310 accessible over a Network 1300. As User 50
operates Word Application 120 in his/her pursuit of writing,
UAIE can learn Word Application’s 120 instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.), and anticipate
future instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610) as previously described. Additionally, a
global Knowledgebase 530 including writing knowledge
(i.e. Knowledge Cells 800, etc.) of other users may be
available to be used in anticipating Word Application’s 120
instructions and/or operations. For example, User 50 may
want to write a letter to his/her representative (congressman,
senator, governor, etc.) concerning a topic. There may exist
a global Knowledgebase 530 of writings on the topic that
User’s Word Application 120 and/or UAIE can access. User
50 may write the letter by inputting characters, words,
phrases, sentences, or other text, by performing edits or
formatting, or by performing other operations within Word
Application 120. Word Application 120 can implement the
inputting of characters, words, phrases, sentences, or other
text, the edits or formatting, and/or other operations by
executing instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) of Word Application 120. In this and each of
the preceding examples, UAIE can learn Word Application’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement one or more operations. The instructions
(i.e. Instruction Sets 600, etc.) can be disassembled into their
portions and stored in Operation 610 or other repository
along with any Extra Info 630. Operation 610 can then be
stored in Operation List 510 that comprises recently used or
implemented (i.e. executed, etc.) Operations 610 or instruc-
tion Sets 600. Knowledge Structuring Unit 520 may create
a Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of Word Application’s 120 opera-
tions as previously described. User 50 may start his/her letter
by addressing the representative and writing his/her title,

10

15

20

25

30

35

40

45

50

55

60

65

170

first and last name. In some aspects, as User is writing the
representative’s title, first and last name, Decision-making
Unit 540 can search for a Knowledge Cell 800 that includes
comparative instructions (i.e. comparative Instruction Sets
600 or Operations 610, etc.) used to implement similar text
(i.e. title, first and last name, etc.) and/or its properties (i.e.
formatting, etc.). Decision-making Unit 540 may find a
Substantially Similar Knowledge Cell 1110 that includes
such comparative instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) used to implement similar text (i.e.
title, first and last name, etc.) and/or its properties (i.e.
formatting, etc.) as in Comparative Section 471a shown in
FIG. 52, for example. Substantially Similar Knowledge Cell
1110 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent text (i.e. the representative’s entire
address, etc.) and/or its properties as in Anticipatory Section
4715, for example. UAIE can then implement the subse-
quent text and/or its properties as in Anticipatory Section
4715 autonomously based on similar text and/or other
operations performed in a prior similar letter or writing,
thereby implementing anticipation of Word Application’s
120 operations as previously described. User 50 may then
input additional text (i.e. opening sentence, additional
words, sentences, paragraphs, etc.), perform additional edits
or formats, or perform other operations within Word Appli-
cation 120. In some aspects, as User is inputting additional
text (i.e. first part of an opening sentence, etc.), performing
additional edits or formats, and/or performing other opera-
tions, Decision-making Unit 540 may search for a Knowl-
edge Cell 800 that includes comparative instructions (i.e.
comparative Instruction Sets 600 or Operations 610, etc.)
used to implement similar text (i.e. first part of an opening
or other sentence, etc.) and/or its properties (i.e. formatting,
etc.). Decision-making Unit 540 may find a Substantially
Similar Knowledge Cell 1110 that includes such compara-
tive instructions (i.e. comparative instruction Sets 600 or
Operations 610, etc.) used to implement similar text (i.e. first
part of an opening or other sentence, etc.) and/or its prop-
erties (i.e. formatting, etc.) as in Comparative Section 472a
shown in FIG. 52, for example. Substantially Similar
Knowledge Cell 1110 may also include anticipatory instruc-
tions (i.e. anticipatory Instruction Sets 600 or Operations
610, etc.) used to implement subsequent text (i.e. second
part of the opening or other sentence, subsequent words,
sentences, paragraphs, subsequent formats or edits, etc.)
and/or its properties as in Anticipatory Section 47256 shown
in FIG. 52, for example. UAIE can then implement the
subsequent text and/or its properties as in Anticipatory
Section 4726 autonomously based on similar text and/or
other operations performed in a prior similar letter or
writing, thereby implementing anticipation of Word Appli-
cation’s 120 operations as previously described. Any Antici-
patory Section 4715, 4725, etc. may include any number of
characters, words, phrases, sentences, paragraphs, or other
text. In some aspects, key words, key phrases, and/or other
key items such as representative’s name, topic of the letter,
and/or other information can be stored in Extra Info 630 or
other repository to help identify a global Knowledgebase
530 from which to draw knowledge or information. Key
words, phrases, and/or other items may include words,
phrases, and/or other items that were most frequently used
or used in prominent sections of the letter such as the
addressing section, opening sentence, first paragraph, and/or
other sections. In one example, after User 50 inputs repre-
sentative’s title, first and last name, UAIE may look for a
Knowledgebase 530 containing letters, articles, and/or other

US 9,443,192 Bl

171

writings to or about the particular representative. In another
example, after User 50 inputs the topic of the letter (i.e.
environment, pollution, etc.) or the topic is extracted from
the letter, UAIE may look for a Knowledgebase 530 con-
taining letters, articles, and/or other writings about or includ-
ing the particular topic.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-
edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Word
Application’s 120 operations as previously described. Fur-
thermore, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Word Application’s
120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a word
application’s operations and of UAIE functionalities with
respect to word application, and while all possible embodi-
ments are too voluminous to describe, other embodiments
are within the scope of this disclosure.

Referring to FIG. 53, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a media application.
Such embodiments may include artificial intelligence that
enables a media player or other such device or application to
learn the operation of the media application, store this
knowledge in a knowledgebase, neural network, or other
repository, and enable autonomous operation of the media
application with partial, minimal, or no user input to help the
user in his/her use of media player.

UALIE can be used on a Media Player 70 (i.e. Computing
Device 70, etc.). Media Player 70 may include Media
Application 120 (i.e. Software Application 120, etc.), UAIE,
Acquisition and Modification Interface 110, Artificial Intel-
ligence Unit 130, Display 21, Memory 12, Storage 27,
Sound interface 751, Speaker 752, and Media Player Con-
trols 755. Other additional elements may be included as
needed, or some of the disclosed ones may be excluded, or
a combination thereof may be utilized in alternate embodi-
ments.

Media Player 70 comprises the functionality for perform-
ing media operations, and/or other functionalities. Media
Player 70 comprises the functionality for playing media.
Examples of Media Player 70 include a music player such as
an iPod, a video player such as a DVD player, a picture
player, a television device, a media capable computer, a
media capable cellular phone such as a smartphone, a media
capable tablet, and/or other media players. Media Player 70
can be referred to as and comprises any features, function-
alities, and embodiments of Computing Device 70.

In some aspects, Media Application 120 comprises the
functionality for performing media operations on Media

30

35

40

45

55

172

Player 70, and/or other functionalities. Media Application
120 comprises the functionality for accessing, playing, man-
aging, manipulating, and/or performing other operations on
media or references thereto. Media can be stored in files,
objects, data structures, and/or other repositories or in a
database, DBMS, and/or other such system or repository.
Media comprises sound, video, pictures, and/or other media
generally included in digital files. Media files may include
additional information such as author, authorship date, copy-
right information, and/or other additional information per-
tinent to the media. Media Application 120 and/or media
(i.e. media files, etc.) can reside on User’s 50 Media Player
70 or on a Remote Computing Device 1310 accessible over
a Network 1300, and if on a Remote Computing Device
1310, Media Player 70 and/or media (i.e. media files, etc.)
may be available as a network service such as music or video
streaming service (i.e. Netflix, Youtube, Pandora, iTunes,
etc.). UAIE can attach to and obtain Media Application’s
120 instructions, data, and/or other information and modify
execution and/or functionality of Media Application 120,
thereby providing artificial intelligence functionalities to
Media Application 120 as previously described. User 50 can
operate Media Application 120 by using Media Player’s 70
control means. In one example, User 50 can input his/her
music playing instructions by using the music player’s
native control means such as iPod’s control wheel. In
another example, User 50 can input his/her channel watch-
ing instructions by using television device’s native control
means such as a remote controller. In yet another example,
User 50 can input his/her operating instructions by using
Media Player Controls 755. User 50 can input his/her
operating instructions by using any other means or methods,
or a combination thereof. Media Application 120 can be
referred to as and comprises any features, functionalities,
and embodiments of Software Application 120.

Media Player Controls 755 comprises the functionality for
inputting media operating instructions, data, and/or other
inputs, and/or other functionalities. Media Player Controls
755 may include any means of inputting operating instruc-
tions, data, and/or other inputs such as by pressing keys or
buttons, touching keys or buttons, clicking keys or buttons,
sliding physical or graphical components, and/or manipu-
lating other physical, graphical, and/or other elements.
Examples of Media Player Controls 755 may include a
control wheel (i.e. iPod’s control wheel, etc.), a remote
controller, a keypad, a touchscreen, a keyboard, a track
point, or other input or control device.

Sound Interface 751 comprises the functionality for
acoustical processing of output from Media Application 120
(i.e. Software Application 120, etc.) or other disclosed
elements, and/or other functionalities. Sound Interface 751
may be or include a sound driver, a sound APL a built-in
sound interface, an operating system provided interface, a
sound processing device, a sound card, a sound adapter,
and/or other sound interface.

Speaker 752 comprises the functionality for producing
sound, and/or other functionalities. Speaker 752 can be a
built-in or an external speaker, headphone, and/or other
sound producing device.

In one example, when User 50 wishes to play a media file
on Media Player 70, User 50 can issue an operating instruc-
tion to Media Application 120 via Media Player Controls
755 to play the media file. Media Application 120 may then
retrieve the media file or a reference thereto from Memory
12, Storage 27, Remote Computing Device 1310, and/or
other system or repository and play the media file. In another
example, when User 50 wishes to increase or decrease sound

US 9,443,192 Bl

173

volume, User 50 can issue an operating instruction to Media
Application 120 via Media Player Controls 755 to increase
or decrease sound volume of Speaker 752. In yet another
example, when User 50 wishes to skip a specific part of a
media file, User 50 can issue an operating instruction to
Media Application 120 via Media Player Controls 755 to
fast forward a part of the media file. Various other operating
instructions and/or operations can be implemented in Media
Application 120 examples of which include rewinding,
pausing or stopping a media file, changing the view of a
media file, renaming a media file, viewing or editing media
file information (i.e. Extra Info 630, etc.), deleting a media
file, creating, editing or manipulating media file lists, and/or
other media player instructions and/or operations. UAIE can
learn Media Application’s 120 instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) and/or contextual infor-
mation (i.e. Extra Info 630, etc.) used to implement opera-
tions such as media file or a reference thereto playing, sound
volume changing, fast forwarding, and/or other operations
by storing the instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) and/or contextual information (i.e.
Extra Info 630, etc.) in Knowledgebase 530, Neural Net-
work 850, or other repository, and anticipate future instruc-
tions (i.e. anticipatory Instruction Sets 600 or Operations
610, etc.) as previously described.

In some exemplary embodiments, Media Player 70 com-
prises a music player such as an iPod. Media Application
120 may include or access music files or references thereto
stored in Media Player’s 70 Memory 12, Storage 27, and/or
other local repository, for example. User 50 may listen to a
playlist of songs A, B, C, and D. After songs A and B are
finished playing, song C would start. After certain time, User
50 may decide that he/she does not like a middle part of song
C and User 50 can issue an operating instruction to Media
Application 120 to fast forward song C to listen to the
ending of song C. Media Application 120 may execute a
function such as fastForward(73, . . .) to implement fast
forwarding of song C by 73 seconds, for example. User 50
can then listen to the ending of song C and go on to listen
to entire song D in the playlist. UAIE can learn Media
Application’s 120 function or instruction (i.e. Instruction Set
600 or Operation 610, etc.) used to implement fast forward-
ing song C. UAIE can also learn contextual information (i.e.
Extra Info 630, etc.) such as the name of song C, time offset
from the start of song C at which User 50 initiated fast
forwarding, and/or other contextual information. UAIE can
then anticipate future fast forwarding functions or instruc-
tions (i.e. anticipatory Instruction Sets 600 or Operations
610, etc.) as previously described. Next time User 50 plays
song C, Media Application 120 can implement fast forward-
ing and/or other operations autonomously.

In other exemplary embodiments, Media Player 70 may
be a desktop computer, smart phone, or network connected
television device with web browsing capabilities such as a
“smart TV”. Media Application 120 may include or access
video files or references thereto stored on a Remote Com-
puting Device 1310 accessible over a Network 1300. In one
example, the video files can be delivered as a network
service such as video or channel streaming service (i.e.
Netflix, Google Play, iTunes, etc.). In another example, the
video files can be delivered as a network service such as
video file downloading service where files are downloaded
to Media Player’s 70 Memory 12, Storage 27, and/or other
local repository and then played. User 50 may prefer specific
settings when he/she watches video files on a specific
device. For example, User 50 may watch a file from a video
streaming service on a desktop computer in his/her office.

10

15

20

25

30

35

40

45

50

55

60

65

174

Upon starting the video file, User 50 may decide to adjust
Media Application’s 120 window size, volume, subtitles,
and/or other settings to his/her preference for a desktop
computer and office setting. User 50 may then go to a park
on his/her lunch break and watch a file from the video
streaming service on a smartphone. Upon starting or con-
tinuing a video file, User 50 may decide to adjust Media
Application’s 120 window size, volume, subtitles, and/or
other settings to his/her preference for a smartphone and
outdoor setting. User 50 may then go home at the end of the
day and watch a file from the video streaming service on a
smart TV. Upon starting or continuing a video file, User 50
may decide to adjust Media Application’s 120 window size,
volume, subtitles, and/or other settings to his/her preference
for smart TV and home setting. For each of the Media
Players 70 (i.e. desktop computer, smartphone, smart TV,
etc.), User 50 can issue operating instructions to Media
Application 120 to adjust window size, volume, subtitles,
and/or other settings. Media Application 120 may execute
functions such as setWindowSize(400, 300, . . .), setVolume
(48, .. .), and subtitlesOn() to implement adjusting window
size, volume, and subtitles, for example. UAIE can learn
Media Application’s 120 functions or instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) used to imple-
ment adjusting window size, volume, and subtitles. UAIE
can also learn contextual information (i.e. Extra Info 630,
etc.) such as the type of computing device, display size,
and/or other contextual information. UAIE can then antici-
pate future functions or instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) as previously
described. Next time User 50 watches a video file on a
specific Media Player 70 (i.e. desktop computer, smart-
phone, smart TV, etc.), Media Application 120 can imple-
ment adjusting the settings and/or other operations for that
particular device autonomously.

In further exemplary embodiments, a global Knowledge-
base 530 including video playing knowledge (i.e. Knowl-
edge Cells 800, etc.) of other users may be available to be
used in anticipating Media Application’s 120 instructions.
For example, a Knowledge Cell 800 or other repository may
include specific video files and their network locations that
users of the global Knowledgebase 530 may find useful in
searching for their video content of interest.

In yet other exemplary embodiments, Media Player 70
may be a standard television device without web browsing
capabilities. Media Application 120 may include or access
cable, satellite, on-the-air, and/or other video channels or
references thereto. In one example, User 50 may watch
specific channels at specific times (as many television
watchers do when they watch daily or weekly scheduled
shows), and UAIE can learn the channel switching instruc-
tions and their times (i.e. using time stamp, etc.) and
autonomously switch to these channels at their specific
times. If User 50 is not at home, UAIE can also trigger a
recording process learned from User 50 as previously
described for later recorded channel watching. In another
example, while watching his/her favorite show, User 50 may
switch to other channels during commercials in specific time
intervals, and UAIE can learn the channel switching instruc-
tions and their time intervals (i.e. using time stamp or other
Extra Info 630, etc.) and autonomously switch the channels
to avoid commercials. In a further example, User 50 may
change color, contrast, brightness, and/or other settings
based on User’s 50 preferences for various types of channels
and content (i.e. darker for movies, etc.), and UAIE can
learn these settings changing instructions and adjust the
settings autonomously. In each of the preceding examples,

US 9,443,192 Bl

175

UAIE can learn Media Application’s 120 instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.) used to implement
one or more operations. The instructions (i.e. Instruction
Sets 600, etc.) can be disassembled into their portions and
stored in Operation 610 or other repository along with any
Extra Info 630. Operation 610 can then be stored in Opera-
tion List 510 that comprises recently used or implemented
(i.e. executed, etc.) Operations 610 or Instruction Sets 600.
Knowledge Structuring Unit 520 may create a Knowledge
Cell 800 from the Operation List 510 and store the Knowl-
edge Cell 800 in Knowledgebase 530, thereby implementing
learning of Media Application’s 120 operations as previ-
ously described. Furthermore, Decision-making Unit 540
may search for a Knowledge Cell 800 that includes com-
parative instructions (i.e. comparative Instruction Sets 600
or Operations 610, etc.) used to implement one or more
operations. Decision-making Unit 540 may find a Substan-
tially Similar Knowledge Cell 1110 that includes such
comparative instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.). Substantially Similar Knowledge Cell 1110
may also include anticipatory instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) used to imple-
ment subsequent operations. UAIE can then implement the
subsequent operations autonomously based on similar
operations performed in prior similar circumstances, thereby
implementing anticipation of Media Application’s 120
operations as previously described.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-
edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Media
Application’s 120 operations as previously described. Fur-
thermore, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Media Application’s
120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a media
application’s operations and of UAIE functionalities with
respect to media application, and while all possible embodi-
ments are too voluminous to describe, other embodiments
are within the scope of this disclosure.

Referring to FIG. 54, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a global position system
(GPS) application. Such embodiments may include artificial
intelligence that enables a GPS receiver or other such device
or application to learn the operation of the GPS application,
store this knowledge in a knowledgebase, neural network, or
other repository, and enable autonomous operation of the
GPS application with partial, minimal, or no user input to
help the user in his/her use of the GPS receiver.

10

15

20

25

30

35

40

45

50

55

60

65

176

UALIE can be used on a GPS Receiver 70 (i.e. Computing
Device 70, etc.). GPS Receiver 70 may include GPS Appli-
cation 120 (i.e. Software Application 120, etc.), UAIE,
Acquisition and Modification Interface 110, Artificial Intel-
ligence Unit 130, Display 21, Memory 12, Storage 27,
Sound interface 751, Speaker 752, Speech Recognizer 753,
Microphone 754, and Touchscreen 771. Other additional
elements may be included as needed, or some of the dis-
closed ones may be excluded, or a combination thereof may
be utilized in alternate embodiments.

GPS Receiver 70 comprises the functionality for perform-
ing GPS operations, and/or other functionalities. Examples
of GPS Receiver 70 include a hand-held GPS receiver, a
built-in GPS receiver (i.e. built-in a car or boat, etc.), GPS
capable cellular telephone (i.e. smartphone, etc.), and/or
other GPS receivers. GPS Receiver 70 can be referred to as
and comprises any features, functionalities, and embodi-
ments of Computing Device 70.

In some aspects, GPS Application 120 comprises the
functionality for performing GPS operations on GPS
Receiver 70, and/or other functionalities. GPS Application
120 comprises the functionality for accessing, managing,
manipulating, presenting, performing calculations with, and/
or performing other operations on or with location refer-
ences. Location references can be stored in files, objects,
data structures, and/or other such repositories or in a data-
base, DBMS, and/or other such system or repository. A
location reference may include latitude/longitude/altitude
coordinates, street address, distance from a point, absolute
or relative location reference, and/or other location refer-
ence. A location reference may also include additional
information such as nearby restaurants, museums or other
attractions, population information, historic facts, climate/
weather information, and/or other additional information
pertinent to a specific location reference. GPS Application
120 and/or location references can reside on User’s 50 GPS
Receiver 70 or on a Remote Computing Device 1310
accessible over a Network 1300, and if on a Remote
Computing Device 1310, GPS Application 120 and/or loca-
tion references may be available as a network service such
as online GPS Application 120, web service for updating
location references, or other network service. UAIE can
attach to and obtain GPS Application’s 120 instructions,
data, and/or other information and modify execution and/or
functionality of GPS Application 120, thereby providing
artificial intelligence functionalities to GPS Application 120
as previously described. User 50 can operate GPS Applica-
tion 120 by using GPS Receiver’s 70 control means. In one
example, User 50 can input his/her operating instructions by
using GPS Receiver’s 70 native control means such as
Touchscreen 771. In another example, User 50 can input
his/her operating instructions by using voice inputs via
Microphone 754 and Speech Recognizer 753 that may
interpret voice inputs as previously described. User 50 can
input his/her operating instructions by using any other
means or methods, or a combination thereof. GPS Applica-
tion 120 can be referred to as and comprises any features,
functionalities, and embodiments of Software Application
120.

Touchscreen 771 comprises the functionality for enabling
input of operating instructions, data, and/or other inputs,
and/or other functionalities. Touchscreen 771 may include
any means of inputting operating instructions, data, and/or
other inputs such as by touching areas of Touchscreen 771,
sliding Touchscreen’s 3620 slider components, and/or
manipulating other Touchscreen 771 elements.

US 9,443,192 Bl

177

Speech Recognizer 753 comprises the functionality for
processing input events of Microphone 754 for use by GPS
Application 120 or other elements, and/or other functional-
ities. Speech Recognizer 753 comprises the functionality for
“listening” to voice events on Microphone 754, interpreting
the voice events as User’s 50 voice commands, and trans-
mitting the voice commands for use by GPS Application 120
or other elements. Speech Recognizer 753 can be imple-
mented by utilizing, for example, (1) an operating system’s
speech recognition functionality such as iOS’s Voice Ser-
vices, Siri, etc. which may come inherently as part of the
computing device or mobile device package; (2) a Java
Speech API (JSAPI) or any of its implementations such as
The Cloud Garden, Sphinx, etc.; (3) applications or engines
providing speech recognition functionality such as Ope-
nEars, Dragon Mobile, iSpeech, CeedVocal, Flite, Julius,
etc.; and/or (4) other systems or techniques including cus-
tom ones. Speech Recognizer 753 enables User 50 to issue
operating instructions by voice input. In general, Speech
Recognizer 753 may identify or recognize speech or sound
from Microphone 754 by comparing sample values of
digitally sampled sound (or portions thereof) coming from
Microphone 754 with sample values of digitally sampled
sound from a collection of known sounds. The collection of
known sounds can be stored locally on GPS Receiver 70 or
remotely on a remote computing device accessible over a
network.

Microphone 754 comprises the functionality for receiving
and/or detecting User’s 50 voice events or inputs, and/or
other functionalities. Most modern mobile and computing
devices include Microphone 754 as one of the input devices.

In one example, when User 50 wishes to visit a location
stored on GPS Receiver 70, User 50 can issue an operating
instruction to GPS Application 120 via Touchscreen 771 to
calculate a route and provide directions from User’s 50
current location to the location User 50 wishes to visit.
User’s 50 current location can be determined by using
satellite signals, cellular signals triangulation, and/or by
other methods. In another example, when User 50 wishes to
change a route that GPS Application 120 previously calcu-
lated, User 50 can issue an operating instruction to GPS
Application 120 via Touchscreen 771 to calculate an alter-
nate route and provide directions from User’s 50 current
location to the location User 50 wishes to visit. In yet
another example, when User 50 wishes to view information
about a location User 50 wishes to visit (i.e. when User 50
reaches the location, etc.), User 50 can issue an operating
instruction to GPS Application 120 via Touchscreen 771 to
present location information (i.e. nearby restaurants, muse-
ums or other attractions, population information, historic
facts, climate/weather information, etc.) on Display 21.
Various other operating instructions and/or operations can be
implemented in GPS Application 120 examples of which
include changing the view of a location reference (i.e.
zooming, tilting, moving, etc.), changing the view of a
calculated route or directions, increasing or decreasing the
volume of any voice directions, adjusting user preferences
(i.e. calculating quickest or shortest routes, avoiding toll
roads, screen color preferences, language preferences, etc.),
updating location references (i.e. updating from a network
service, etc.), renaming a location reference, viewing or
editing location reference information (i.e. Extra info 630,
etc.), deleting a location reference, and/or any other GPS
receiver instructions and/or operations. UAIE can learn GPS
Application’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) and/or contextual information (i.e.
Extra Info 630, etc.) used to implement operations such as

10

15

20

25

30

35

40

45

50

55

60

65

178

calculating a route, changing a route, viewing a location
information, and/or other operations by storing the instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.) in
Knowledgebase 530, Neural Network 850, or other reposi-
tory, and anticipate future instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) as previously
described.

In some exemplary embodiments, GPS Receiver 70 com-
prises a network connected GPS receiver. GPS Application
120 may include or access location references stored in GPS
Receiver’s 70 Memory 12, Storage 27, and/or other local
repository, or on a Remote Computing Device 1310 acces-
sible over a Network 1300. As User 50 operates GPS
Application 120 in his/her pursuit of visiting locations of
interest, UAIE can learn GPS Application’s 120 instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) and/or
contextual information (i.e. Extra info 630, etc.), and antici-
pate future instructions (i.e. anticipatory Instruction Sets 600
or Operations 610) as previously described. Additionally, a
global Knowledgebase 530 including location visiting
knowledge (i.e. Knowledge Cells 800, etc.) of other users
may be available to be used in anticipating GPS Applica-
tion’s 120 instructions. For example, a Knowledge Cell 800
or other repository may include specific locations that users
of the global Knowledgebase 530 may find useful in search-
ing for their locations of interest to visit. Specifically, for
example, User 50 may come to a city for the first time and
look for places of interest to visit. After User 50 discovers
and visits a great restaurant and/or an interesting museum.
UAIE can anticipate User’s 50 future location visiting
instructions based on location visits of other users in the
global Knowledgebase 530 who visited the same or similar
restaurant and/or museum. In this and each of the preceding
examples, UAIE can learn GPS Application’s 120 instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.) used
to implement one or more operations. The instructions (i.e.
Instruction Sets 600, etc.) can be disassembled into their
portions and stored in Operation 610 or other repository
along with any Extra Info 630. Operation 610 can then be
stored in Operation List 510 that comprises recently used or
implemented (i.e. executed, etc.) Operations 610 or Instruc-
tion Sets 600. Knowledge Structuring Unit 520 may create
a Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of GPS Application’s 120 operations
as previously described. Furthermore, Decision-making
Unit 540 may search for a Knowledge Cell 800 that includes
comparative instructions (i.e. comparative Instruction Sets
600 or Operations 610, etc.) used to implement one or more
operations. Decision-making Unit 540 may find a Substan-
tially Similar Knowledge Cell 1110 that includes such
comparative instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.). Substantially Similar Knowledge Cell 1110
may also include anticipatory instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) used to imple-
ment subsequent operations. UAIE can then implement the
subsequent operations autonomously based on similar
operations performed in prior similar circumstances, thereby
implementing anticipation of GPS Application’s 120 opera-
tions as previously described.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-

US 9,443,192 Bl

179

edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of GPS Appli-
cation’s 120 operations as previously described. Further-
more, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of GPS Application’s
120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a GPS
application’s operations and of UAIE functionalities with
respect to GPS application, and while all possible embodi-
ments are too voluminous to describe, other embodiments
are within the scope of this disclosure.

Referring to FIG. 55, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a computer game (also
referred to as video game, game application, game, or other
such reference, etc.). Such embodiments may include arti-
ficial intelligence that enables a gaming device or other such
device or application to learn the operation of the computer
game and/or any of its objects (i.e. player’s avatar, oppo-
nent’s avatar, computer object, etc.), store this knowledge in
a knowledgebase, neural network, or other repository, and
enable autonomous operation of the computer game and/or
any of its objects with partial, minimal, or no user input to
help the user in his/her use of the computer game.

UAIE can be used on Gaming Device 70 (i.e. Computing
Device 70, etc.). Gaming Device 70 may include Game
Application 120 (i.e. Software Application 120, etc.), UAIE,
Acquisition and Modification Interface 110, Artificial Intel-
ligence Unit 130, Display 21, Memory 12, Storage 27, and
Game Controller 641. Other additional elements may be
included as needed, or some of the disclosed ones may be
excluded, or a combination thereof may be utilized in
alternate embodiments.

Gaming Device 70 comprises the functionality for pro-
cessing or implementing computer games (i.e. Game Appli-
cations 120, etc.), and/or other functionalities. Examples of
Gaming Device 70 include a video game console (i.e. Sony
PlayStation, Microsoft Xbox, etc.), arcade machine, laptop
or desktop computer, tablet computer, computing capable
telephone (i.e. smartphone, cellular phone, etc.), server,
and/or other gaming or computing devices. Gaming Device
70 can be referred to as and comprises any features, func-
tionalities, and embodiments of Computing Device 70.

In some aspects, Game Application 120 comprises the
functionality for performing gaming operations on Gaming
Device 70, and/or other functionalities. Various types of
Game Applications 120 exist such as 2D, 3D, single player,
multi-player, strategic, action, adventure, word puzzles,
mind games, and/or other game types. One of ordinary skill
in art will understand that while all possible embodiments of
Game Applications 120 or their types are too voluminous to
list, they are all within the scope of this disclosure. Examples
of some popular Game Applications 120 include Tetris,
Pac-man, Solitaire, Super Mario, Doom, Command and

10

15

20

25

30

35

40

45

50

55

60

65

180

Conquer, Grand Theft Auto, and/or others. UAIE can attach
to and obtain Game Application’s 120 instructions, data,
and/or other information and modify execution and/or func-
tionality of Game Application 120, thereby providing arti-
ficial intelligence functionalities to Game Application 120 as
previously described. Game Application 120 can reside on
User’s 50 Gaming Device 70 or on a Remote Computing
Device 1310 accessible over a Network 1300, and if on a
Remote Computing Device 1310, Game Application 120
may be available as a network service such as zynga.com,
games.com, and/or other online gaming services. User 50
can operate Game Application 120 by using Gaming
Device’s 70 control means. In one example, User 50 can
input his/her game playing instructions by using Gaming
Device’s 70 native control means such as Game Controller
641. In another example, User 50 can input his’her game
playing instructions by using a camera or other detector that
captures User’s 50 body movements. In yet another
example, User 50 can input his/her game playing instruc-
tions by using voice inputs via Microphone 754 and Speech
Recognizer 753 that may interpret voice inputs. User 50 can
input his/her operating or game playing instructions by using
any other means or methods, or a combination thereof.
Game Application 120 can be referred to as and comprises
any features, functionalities, and embodiments of Software
Application 120.

Game Controller 641 comprises the functionality for
enabling input of game playing instructions, data, and/or
other inputs, and/or other functionalities. Game Controller
641 may include any means of inputting operating instruc-
tions, data, and/or other inputs such as by pressing keys or
buttons, touching keys or buttons, clicking keys or buttons,
moving or sliding physical or graphical components, and/or
manipulating other physical, graphical, and/or other ele-
ments. Examples of Game Controller 641 include Sony
PlayStation or Microsoft Xbox game controller, Sony Play-
Station Portable or other handheld game console controller,
arcade machine controller, joystick, keyboard, keypad,
mouse, steering wheel, glove, weapon (i.e. gun, sword, etc.),
touchscreen, control wheel, track point, or other input or
control device.

In one example, when User 50 wishes to start a Game
Application 120, User 50 can issue an operating instruction
to Game Application 120 via Game Controller 641 to start
Game Application 120. In another example, when User 50
wishes to move his/her avatar or another object forward in
a Game Application 120, User 50 can issue an operating
instruction to Game Application 120 via Game Controller
641 to move forward. In yet another example, when User 50
wishes to jump in a Game Application 120, User 50 can
issue an operating instruction to Game Application 120 via
Game Controller 641 to jump (i.e. elevate player’s avatar or
another object over an obstacle, etc.). In yet another
example, when User 50 wishes to utilize an object in a Game
Application 120, User 50 can issue an operating instruction
to Game Application 120 via Game Controller 641 to utilize
the object (i.e. utilize a shield, open a door, activate a switch,
etc.). In yet another example, when User 50 wishes to save
a state of a Game Application 120, User 50 can issue an
operating instruction to Game Application 120 via Game
Controller 641 to save the state of the Game Application 120
(i.e. save the state of a game in a file or other repository for
later playing, etc.). Various other game playing or operating
instructions and/or operations can be implemented in Game
Application 120 examples of which include pausing or
stopping a Game Application 120, moving in various direc-
tions (i.e. forward, backward, right, left, up, down, angular,

US 9,443,192 Bl

181

diagonal, etc.), selecting or changing appearance of the
player’s avatar, selecting or utilizing an object, communi-
cating with other players, deleting or renaming a saved game
file, and/or other computer game instructions and/or opera-
tions. UAIE can learn Game Application’s 120 instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) and/or
contextual information (i.e. Extra Info 630, etc.) used to
implement operations such as starting a game, moving
forward, jumping, utilizing an object, saving a game state,
and/or other operations by storing the instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.) in Knowledgebase
530, Neural Network 850 or other repository, and anticipate
future instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) as previously described.

In some exemplary embodiments, Gaming Device 70
comprises a video game console such as Sony PlayStation or
Microsoft Xbox, handheld game console such as Sony
PlayStation Portable or Nintendo 3DS, or other game con-
sole. In one example, User 50 can perform various actions
or operations to defeat an opponent such as hit the opponent
with body parts or objects (i.e. fists, handheld weapons,
etc.), shoot the opponent with firearms (i.e. guns, missiles,
etc.), use magic on the opponent (i.e. magical objects or
weapons, etc.), and/or perform other actions or operations.
In some aspects, each type of opponent can be defeated by
performing specific actions or operations for that type of
opponent such as a fighter in a martial arts game may need
to be hit in the head a number of times or in the chest a
number of times, or both. In another example, User 50 can
perform various moves or maneuvers to overcome an
obstacle such as jump over an obstacle, crawl under an
obstacle, move around an obstacle, climb over an obstacle,
fly over an obstacle, and/or perform other moves or maneu-
vers. In some aspects, each type of obstacle may be over-
come by performing specific moves or maneuvers for that
type of obstacle. In yet another example, User 50 can save
a state of the game played in regular or other intervals (i.e.
every 30 minutes, etc.), after reaching a certain stage in the
game (i.e. after completing a level, etc.), or at other times or
stages in the game. User 50 may pause the game, select
saving operation, select default name or name the file or
object into which to save the game, resume the game, and/or
perform other operations. In yet another example, User 50
can have a preference for specific game settings (i.e. number
of players, game difficulty, etc.), game object settings (i.e.
appearance of player’s avatar, player’s avatar’s weapons,
etc.), and/or other game settings. As User 50 performs
actions, operations, moves, or maneuvers in each of the
examples above, UAIE can learn Game Application’s 120
instructions (i.e. Instruction Set 600 or Operation 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.) used
to implement actions, operations, moves or maneuvers such
as to defeat opponent, to overcome an obstacle, to save a
game, to adjust game settings, and/or other actions, opera-
tions, moves, or maneuvers. UAIE can also anticipate future
instructions (i.e. anticipatory Instruction Sets 600 or Opera-
tions 610, etc.) to defeat opponent, to overcome an obstacle,
to save a game, to adjust game settings, and/or to perform
other actions, operations, moves, or maneuvers autono-
mously as previously described.

Referring to FIG. 56, in some exemplary embodiments,
User 50 may play a game (i.e. Game Application 120, etc.)
in which User’s Avatar 643 is near Opponent 644 and User
50 may want to engage Opponent 644 to defeat it. User 50
may want to perform various actions, moves, maneuvers,
behaviors, and/or other operations while engaging Opponent

10

15

20

25

30

35

40

45

50

55

60

65

182

644 such as moving toward Opponent 644 (i.e. walking,
running, flying, etc.), blocking attacks, shooting at Opponent
644, utilizing objects (i.e. utilizing shield, sword, or other
objects, etc.), and/or performing other defensive, offensive,
evasive, or other actions or operations User 50 deems a good
strategy to defeat Opponent 644 or achieve other game
goals. Each of the operations can be performed by User’s 50
issuing operating instructions to direct User’s Avatar 643 on
how to act and behave. Once User’s 50 operating instruc-
tions are received, Game Application 120 can implement the
corresponding User’s Avatar’s 643 actions or operations by
executing one or more instructions (i.e. Instruction Sets 600
or Operations 610, etc.) that cause User’s Avatar 643 to
behave as User 50 directed. UAIE can learn Game Appli-
cation’s 120 instructions (i.e. Instruction Set 600 or Opera-
tion 610, etc.) and/or contextual information (i.e. Extra Info
630, etc.) used to implement User’s Avatar’s 643 or other
object’s actions. In one example, a User’s Avatar’s 643
action includes one or more instructions (i.e. Instruction Sets
600 or Operations 610, etc.) to implement showing User’s
Avatar’s 643 head, arms, legs, and/or other body parts on
Display 21 such as showing in upright body position with
arms extended toward opponent. In another example, a
User’s Avatar’s 643 action includes one or more instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) to imple-
ment showing any objects that User’s Avatar 643 may be
using on Display 21 such as showing a handgun in User’s
Avatar’s 643 hands. In yet another example, a User’s Ava-
tar’s 643 action includes one or more instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) to implement
showing any effects of User’s Avatar’s 643 actions on
Display 21 such as showing smoke after shooting. A User’s
Avatar’s 643 action may include one or more instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) to imple-
ment any other action or operation. One or more instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) can be
included in a function. In some aspects, a function includes
all instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) needed to implement a certain action or operation and,
therefore, a call to the function can implement that action or
operation.

In addition to instructions (i.e. Instruction Sets 600 or
Operations 610, etc.), UAIE can also learn contextual,
geo-spatial, situational, environmental, and/or other infor-
mation about User’s Avatar 643 and/or other objects in a
game application. In some aspects, this contextual, geo-
spatial, situational, environmental, and/or other information
can be stored in Extra Info 630 as previously described. In
one example, Extra Info 630 includes any information about
User’s Avatar 643 such as its location (i.e. coordinates,
vector-defined position, absolute or relative position, etc.),
its direction (i.e. north, southwest, 13 degrees angular, etc.),
its speed, and/or other information. In another example,
Extra Info 630 includes any information about objects in a
game such as objects name, object’s type (i.e. player, rock,
forest, pond, building, tank, etc.), object’s location (i.e.
coordinates, vector-defined position, absolute or relative
position, etc.), object’s direction (i.e. east, northwest, 118
degrees angular, etc.), object’s speed, and/or other informa-
tion. In yet another example, Extra Info 630 includes any
information about relationships among objects in a game
such as distance among objects, allegiance among objects
(i.e. opponent, friend, etc.), and/or other information. Extra
Info 630 may include any information about a game appli-
cation or any objects in a game application in alternate
embodiments. Such Extra Info 630 can then provide geo-
spatial and situational awareness and/or other capabilities. In

US 9,443,192 Bl

183

some aspects, Decision-making Unit 540 and/or other dis-
closed elements can utilize Extra Info 630 to best anticipate
future Game Application’s 120 instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) as previously
described.

Contextual, geo-spatial, situational, environmental, and/
or other information about User’s Avatar 643 and/or other
objects in a Game Application 120 can be obtained by
utilizing functions or methods of the 2D or 3D engine or
environment in which the Game Application 120 is imple-
mented. For example, location (i.e. coordinates, vector-
defined position, absolute or relative position, etc.) of an
avatar or other object in a 2D or 3D environment can be
obtained by utilizing a function such as GameObject.Find
(“ObjectN”).transform.position in Unity 3D Engine, GetAc-
torLocation() in Unreal Engine, getPosition() in Torque 3D,
and/or other similar function or method in other 2D and 3D
engines or environments. Furthermore, location (i.e. coor-
dinates, etc.) of an avatar or other object on a screen can be
obtained by utilizing WorldToScreen() or similar function
or method in various 2D or 3D engines or environments. An
avatar’s or other object’s direction, speed, trajectory, and/or
other information can then be computed from its coordi-
nates. Other information (i.e. name, type, allegiance, etc.)
about an avatar or other object in a Game Application 120
can similarity be obtained by utilizing functions or methods
of the 2D or 3D engine or environment in which the Game
Application 120 is implemented or by utilizing functions or
methods of custom built objects within the Game Applica-
tion 120.

Once UAIE has learned instructions (i.e. Instruction Sets
600 or Operations 610, etc.) and/or contextual, geo-spatial,
situational, environmental, and/or other information (i.e.
Extra Info 630, etc.), in future instances where User’s Avatar
643 or other object encounters a similar situation including
Opponent 644 and/or other objects, UAIE can enable
autonomous operation of User’s Avatar 643 or other objects
by causing Game Application 120 to implement instructions
(i.e. anticipatory Instruction Sets 600 or Operations 610,
etc.) autonomously as previously described. Therefore,
UAIE enables learning of a particular player’s (i.e. User’s
50, etc.) methodology or style of playing the game. In some
aspects, learning of a particular player’s (i.e. User’s 50, etc.)
methodology or style of playing the game includes learning
the player’s (i.e. User’s 50, etc.) directing or operating
User’s Avatar 643 in certain contextual, geo-spatial, situ-
ational, environmental, and/or other circumstances. For
example, one player may shoot opponent while another
player may strike the opponent with a sword. Also, one
player may jump over an obstacle while another player may
move around the obstacle. Further, one player may drive fast
in a racing game while another player may drive cautiously,
etc. The knowledge of User’s 50 methodology or style of
playing the game can be used to provide autonomous
functionalities such as auto-pilot and/or other automatic
playing functionalities to Game Application 120, User’s
Avatar 643, and/or other objects in the game. In one
example, auto-pilot, automatic, and/or other autonomous
playing functionalities can be utilized in games where User
50 may need to direct or operate more than one avatar such
as games in which User 50 can switch among avatars and
operate an active avatar while other user’s avatars operate
automatically or autonomously. In another example, auto-
pilot, automatic, and/or other autonomous playing function-
alities can be utilized in situations where user may want to
allow his/her avatar to operate automatically or autono-
mously such as in situations when user is distracted (i.e. gets

10

15

20

25

30

35

40

45

50

55

60

65

184

a phone call, etc.) and does not want to pause the game,
and/or in other situations. Auto-pilot, automatic, and/or
other autonomous playing functionalities can be activated to
take control manually by User 50 such as user’s switching
to another avatar, or automatically by the system such as
Decision-making Unit’s 540 finding a Knowledge Cell 800
with high degree of matching accuracy and executing it.
Auto-pilot, automatic, and/or other autonomous playing
functionalities can be effective for any number of actions or
operations such as for a single or multiple actions or
operations, or for any period of time such as for a second, for
a number of minutes, or continuously. Furthermore, knowl-
edge of User’s 50 methodology or style of playing the game
can be utilized to enable operation of artificially intelligent
avatars that operate with full or partial autonomy. An arti-
ficially intelligent avatar may exemplify User’s 50 method-
ology or style of playing the game as learned from User 50.
One or more artificially intelligent avatars can be utilized in
Game Application 120 to assist User 50 in defeating Oppo-
nent 644 or achieving another game goal. In one example,
User 50 can utilize a team or army of artificially intelligent
avatars each of which may exemplify User’s 50 methodol-
ogy or style of playing the game. Artificially intelligent
avatars may be dispersed around User’s Avatar 643 within a
specific radius and follow User’s Avatar’s 643 movement. In
another example, artificially intelligent avatars may move
autonomously toward a certain point or goal in a game. In
yet other example, artificially intelligent avatars can be
completely autonomous and move without any directions
and rely completely on the knowledge learned from User’s
50 methodology or style of playing the game.

In some embodiments, UAIE enables a professional or
other experienced game player to record his/her methodol-
ogy or style of playing a game. The knowledge (i.e. Knowl-
edge Cells 800, etc.) of User’s 50 methodology or style of
playing a game can be stored in Knowledgebase 530 or other
repository. If the knowledge (i.e. Knowledge Cells 800, etc.)
of User’s 50 methodology or style of playing a game is
stored in a global Knowledgebase 530, any Game Applica-
tion 120 or UAIE having access (i.e. over a network, etc.) to
the global Knowledgebase 530 can implement User’s 50
methodology or style of playing a game as previously
described. User 50 can sell his/her knowledge (i.e. Knowl-
edge Cells 800 or entire Knowledgebase 530, etc.) to other
users who may want to implement User’s 50 methodology
or style of playing a game. User 50 can sell his’her knowl-
edge (i.e. Knowledge Cells 800 or entire Knowledgebase
530, etc.) under a commercial or other license. Buyers of the
Knowledge Cells 800 or Knowledgebase 530 can use it for
various purposes such as to improve their own actions,
moves, maneuvers, behaviors, and/or other operations in
playing the game, to enable other characters (i.e. support
characters, avatars, or other objects, etc.) to act, move,
maneuver, behave, and/or perform other operations accord-
ing to the methodology or style of User 50, or use it for any
other purpose. In some aspects, a buyer can load the bought
Knowledge Cells 800 or Knowledgebase 530 into his/her
UAIE. Once loaded, the Knowledge Cells 800 or Knowl-
edgebase 530 can be initiated or activated manually as an
executable sequence or automatically through UAIE’s deci-
sion making process. Buyer’s Game Application 120 can
then implement anticipatory instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) included in the
bought Knowledge Cells 800 or Knowledgebase 530 as
previously described. Any learning, anticipating, and/or
other functionalities implemented using Knowledgebase
530 and/or Knowledge Cells 800 can be similarly imple-

US 9,443,192 Bl

185

mented using Neural Network 850 as previously described.
For example, instead of storing User’s 50 methodology or
style of playing a game in Knowledgebase 530 and/or
Knowledge Cells 800, User’s 50 methodology or style of
playing a game can be stored in Neural Network 850 as
previously described.

In further embodiments, location, distance, direction,
movement, and/or other features or attributes of objects in
Game Application 120 or other application may include or
be determined from coordinates or other location-defining
techniques. Such coordinates may include x (i.e. latitude,
etc.), y (i.e. longitude, etc.), z (i.e. altitude, etc.), and/or other
coordinates. Any other systems of coordinates or location-
defining techniques can be used such as, for example, a
vector-based method, angle and distance from a reference
point, intersecting angles from various reference points,
triangulation, absolute position, relative position, and/or
other systems or techniques.

In further embodiments, objects within a game (i.e. play-
er’s avatar, opponent’s avatar, forest, rock, pond, building,
tank, etc.) can be implemented as data objects in Game
Application’s 120 design or code. In some aspects, UAIE
can be selective in learning Game Application’s 120 instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.) to
include those instructions and/or contextual information
implemented or related to a specific object. In one example,
UAIE can learn Game Application’s 120 instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) and/or contex-
tual information (i.e. Extra Info 630, etc.) implemented or
related to User’s Avatar 643. In another example, UAIE can
learn Game Application’s 120 instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) and/or contextual infor-
mation (i.e. Extra Info 630, etc.) implemented or related to
Opponent 644 even if Opponent 644 may be a computer-
directed or another-player-directed object. In yet another
example, UAIE can learn Game Application’s 120 instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.)
and/or contextual information (i.e. Extra Info 630, etc.)
implemented or related to any other object (i.e. forest, pond,
rock, building, tank, etc.).

In examples shown in FIG. 56, User’s Avatar 643 may
confront Opponent 644 as in scenarios A, B, and C. In an
example in scenario A, Opponent 644 may attempt a physi-
cal attack on User’s Avatar 643 such as an attempt to punch
User’s Avatar 643 as shown. User 50 may decide to move
User’s Avatar 643 into a blocking position or posture to
block the incoming punch. Game Application’s 120 instruc-
tions (i.e. Instruction Sets 600 or Operations 610, etc.) that
implement the blocking posture may include a function such
as blockPunch(Param1, Param2, . . .) that can be disas-
sembled and stored along with any contextual, geo-spatial,
situational, environmental, and/or other information (i.e.
Extra Info 630, etc.) as previously described. In an example
in scenario B, Opponent 644 may utilize an object such as
a shield to deflect incoming projectiles as shown. User 50
may decide to direct User’s Avatar 643 to shoot Opponent
644 with a laser beam that Opponent’s 644 shield cannot
deflect. Game Application’s 120 instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) that implement a laser
shooting action may include a function such as shootlaser
(Param1, Param2, . . .) that can be disassembled and stored
along with any contextual, geo-spatial, situational, environ-
mental, and/or other information (i.e. Extra Info 630, etc.) as
previously described. In an example in scenario C, Oppo-
nent 644 may fly near User’s Avatar 643 as shown. User 50
may decide to direct User’s Avatar 643 to shoot Opponent

5

10

15

20

25

30

35

40

45

50

55

60

65

186

644 with a missile (i.e. homing missile, etc.) that can reach
Opponent 644 in flight. Game Application’s 120 instructions
(i.e. Instruction Sets 600 or Operations 610, etc.) that
implement a missile shooting action may include a function
such as shootMissile(Param1, Param2, . . .) that can be
disassembled and stored along with any contextual, geo-
spatial, situational, environmental, and/or other information
(i.e. Extra Info 630, etc.) as previously described. In sce-
narios A, B, C, and/or other various scenarios, Game Appli-
cation 120 can implement any number of instructions (i.e.
Instruction Sets 600, etc.) or functions that can be disas-
sembled into their portions and stored into Operation 610 or
other repository along with any contextual, geo-spatial,
situational, environmental, and/or other information (i.e.
Extra Info 630, etc.). Operation 610 can then be stored in
Operation List 510 that comprises recently used or imple-
mented (i.e. executed, etc.) Operations 610 or Instruction
Sets 600. Knowledge Structuring Unit 520 may create a
Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of User’s Avatar’s 643 operations
within Game Application 120. Any learning, anticipating,
and/or other functionalities implemented using Knowledge-
base 530 and/or Knowledge Cells 800 can be similarly
implemented using Neural Network 850. In each of the
preceding examples, instead of creating Knowledge Cells
800 and storing them into Knowledgebase 530, Knowledge
Structuring Unit 520 can apply Operations 610 from Opera-
tion List 510 onto a Neural Network 850, thereby imple-
menting learning of Game Application’s 120 operations as
previously described.

In some aspects, Autonomous Avatar 648 or other autono-
mous object may include autonomous user’s avatar, any
other autonomous avatar or character, and/or any autono-
mous object whether controlled by UAIE or other method,
system, or function. Autonomous Avatar 648 or other
autonomous object may include knowledge (i.e. Knowledge
Cells 800, etc.) of actions, moves, maneuvers, behaviors,
and/or other operations learned from User 50. In one
example, Autonomous Avatar 648 or other autonomous
object may encounter Opponent 644 as in or similar to
scenario A in FIG. 56. Decision-making Unit 540 may
search for a Knowledge Cell 800 that includes similar object
(i.e. Opponent 644, etc.) and/or its properties (i.e. punching
posture, etc.) in Autonomous Avatar’s 648 surrounding.
Substantial Similarity Comparison 1010 (i.e. performed by
or for Decision-making Unit, etc.) may find a Substantially
Similar Knowledge Cell 1110 that includes Opponent 644 or
other similar object in a punching or other similar posture,
and that includes instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) used to implement a blocking action as
in scenario A when User 50 directed User’s Avatar 643.
UALIE can then implement the blocking action autonomously
based on similar operations performed in prior similar
circumstances, thereby implementing anticipation of Game
Application’s 120 operations as previously described. In
another example, Autonomous Avatar 648 or other autono-
mous object may encounter Opponent 644 as in or similar to
scenario B in FIG. 56. Decision-making Unit 540 may
search for a Knowledge Cell 800 that includes a similar
object (i.e. Opponent 644, etc.) and/or its properties (i.e.
utilizing a shield, etc.) in Autonomous Avatar’s 648 sur-
rounding. Substantial Similarity Comparison 1010 (i.e. per-
formed by or for Decision-making Unit, etc.) may find a
Substantially Similar Knowledge Cell 1110 that includes
Opponent 644 or other similar object utilizing a shield or
other similar item, and that includes instructions (i.e.

US 9,443,192 Bl

187

Instruction Sets 600 or Operations 610, etc.) used to imple-
ment a laser shooting action as in scenario B when User 50
directed User’s Avatar 643. UAIE can then implement the
laser shooting action autonomously based on similar opera-
tions performed in prior similar circumstances, thereby
implementing anticipation of Game Application’s 120
operations as previously described. In another example,
Autonomous Avatar 648 or other autonomous object may
encounter Opponent 644 as in or similar to scenario C in
FIG. 56. Decision-making Unit 540 may search for a
Knowledge Cell 800 that includes similar object (i.e. Oppo-
nent 644, etc.) and/or its properties (i.e. flying, etc.) in
Autonomous Avatar’s 648 surrounding. Substantial Similar-
ity Comparison 1010 (i.e. performed by or for Decision-
making Unit, etc.) may find a Substantially Similar Knowl-
edge Cell 1110 that includes Opponent 644 or other similar
object flying or performing other similar maneuver, and that
includes instructions (i.e. Instruction Sets 600 or Operations
610, etc.) used to implement a missile shooting action as in
scenario B when User 50 directed User’s Avatar 643. UAIE
can then implement the missile shooting action autono-
mously based on similar operations performed in prior
similar circumstances, thereby implementing anticipation of
Game Application’s 120 operations as previously described.
Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, Decision-
making Unit 540 can search for a path in Neural Network
850 that includes similar objects and/or their properties in
Autonomous Avatar’s 648 surrounding. Decision-making
Unit 540 may find a Substantially Similar Path 855 that
includes such similar objects and/or their properties, and that
includes instructions (i.e. Instruction Sets 600 or Operations
610, etc.) used to implement User’s 50 operations in similar
circumstances. UAIE can then implement the operations
autonomously based on similar operations performed in
prior similar circumstances, thereby implementing anticipa-
tion of Game Application’s 120 operations as previously
described.

In a game application example shown in FIG. 57, User 50
may detect Opponent 644 and choose to move User’s Avatar
643 on Path E toward Opponent 644 to confront Opponent
644. User’s Avatar 643 may be in upright posture in Loca-
tion E1 with coordinates [5,5]. User 50 may decide to move
User’s Avatar 643 into Location E2 with coordinates [5.2,6]
on Path E toward Opponent 644 as shown. Game Applica-
tion’s 120 instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) that implement the move may include a
function such as moveAvatar(5.2, 6, . . .) that can be
disassembled and stored along with any contextual, geo-
spatial, situational, environmental, and/or other information
(i.e. Extra Info 630, etc.) as previously described. In one
example, information that can be stored in Extra Info 630
includes User’s Avatar’s 643 current (i.e. [5.2,6]) and prior
(i.e. [5,5]) coordinates from which direction of movement
(i.e. northeast, 87 degrees, etc.) or other information can be
computed (i.e. computed contextual information, etc.) later
in the process. In some aspects, direction of movement or
other computed information can be pre-computed such as at
a time when the instruction (i.e. Instruction Set 600 or
Operation 610, etc.) implementing the move is disas-
sembled, and the pre-computed direction of movement or
other computed information can be stored as Extra Info 630
s0 no calculation is necessary later in the process. In another
example, Extra Info 630 may store User’s Avatar’s 643 body
position or posture such as upright posture, crawling pos-

20

25

40

45

188

ture, and/or other postures. In another example, Extra info
630 may store coordinates of objects surrounding User’s
Avatar 643 such as Opponent’s 644 coordinates [13,16],
Forest 645 coordinates [5,14], Rock 646 coordinates [10,8].
Pond 647 coordinates [13,4], and/or other objects’ coordi-
nates or locations. In some aspects, coordinates of the center
or any other point of a large object such as Forest 645, Rock
646, Pond 647, and/or others can be utilized to provide
information on the object’s location. In other aspects, coor-
dinates of more than one point of a large object that spans
multiple screens such as Forest 645, Pond 647, and/or others
can be utilized to provide information on the object’s
location. In yet other aspects, coordinates of the boundaries
or points thereon of a large object such as Forest 645, Rock
646, Pond 647, and/or others can be utilized to provide
information on the shape of the object in addition to its
location. In yet another example, Extra Info 630 may store
types of objects surrounding User’s Avatar 643 such as
Opponent 644 being robot object type, Forest 645 being
camouflage object type, Rock 646 being cover object type,
Pond 647 being camouflage object type, and/or other object
types. Objects types may be different in different games such
as Pond 647 may be body-of-water object type in other
games. Any other object types can be used depending on the
game. Any other contextual, geo-spatial, environmental,
situational, and/or other information about User’s Avatar
643 and/or objects in the game can be stored in Extra Info
630. User 50 may then decide to move User’s Avatar 643
into Location E3 with coordinates [5.5,7] toward Opponent
644. Game Application 120 can implement a function such
as moveAvatar(5.5, 7, . . .) that can be stored along with any
Extra Info 630 as previously described. User’s Avatar 643
may be approaching Opponent’s 644 detection area or line
of sight and User 50 may decide to position User’s Avatar
643 in a crawling posture to avoid detection. Game Appli-
cation 120 can implement a function such as changePosture
(“Crawling”, . . .) that can be stored along with any Extra
Info 630 as previously described. User 50 may then decide
to move User’s Avatar 643 into Location E4 with coordi-
nates [7.5,10] toward Opponent 644. Game Application 120
can implement a function such as moveAvatar(7.5,
10, . . .) that can be stored along with any Extra Info 630
as previously described. In some aspects, a single function
can be used to implement the change of posture and the
move such as moveAvatar(“Crawling”, 7.5, 10, . . .) or
moveAvatarCrawling(7.5, 10, . . .). When User’s Avatar 643
reaches Opponent 644, User 50 may decide to place User’s
Avatar 643 into a defensive posture to get ready for close
combat as shown. Game Application 120 can implement a
function such as changePosture(“Defensive”, . . .) that can
be stored along with any Extra info 630 as previously
described. In some aspects, User’s Avatar’s 643 movement
may include a single movement such as from Location E1 to
Location E8. In other aspects, User’s Avatar’s 643 move-
ment may include a set of sub-movements such as from
Location E1 to Location E2, from Location E2 to Location
E3, and so on as shown. In some embodiments, in each
Location E1, E2, E3, E4, E5, E6, E7, ES8, etc. Game
Application 120 can implement a move function, posture
changing function, and/or other instruction (i.e. Instruction
Set 600, etc.) or function that can be disassembled into its
portions and stored in Operation 610 or other repository
along with any Extra info 630. Operation 610 can then be
stored in Operation List 510 that comprises recently used or
implemented (i.e. executed, etc.) Operations 610 or Instruc-
tion Sets 600. Knowledge Structuring Unit 520 may create
a Knowledge Cell 800 from the Operation List 510 and store

US 9,443,192 Bl

189

the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of User’s Avatar’s 643 operations
within Game Application 120. Any learning, anticipating,
and/or other functionalities implemented using Knowledge-
base 530 and/or Knowledge Cells 800 can be similarly
implemented using Neural Network 850. In each of the
preceding examples, instead of creating Knowledge Cells
800 and storing them into Knowledgebase 530, Knowledge
Structuring Unit 520 can apply Operations 610 from Opera-
tion List 510 onto a Neural Network 850, thereby imple-
menting learning of Game Application’s 120 operations as
previously described.

In an example shown in FIG. 58, Autonomous Avatar 648
or other autonomous object may include UAIE functional-
ities comprising knowledge (i.e. Knowledge Cells 800, etc.)
of moves, postures, actions, behaviors, and/or other opera-
tions learned from User 50 in past circumstances such as
circumstances shown in FIG. 57. Autonomous Avatar 648 or
other autonomous object may be near Opponent 644 and/or
other objects as shown. Decision-making Unit 540 may
search fora Knowledge Cell 800 that includes one or more
similar objects (i.e. Opponent 644, Forest 645, Rock 646,
Pond 647, etc.) and/or their properties as in Autonomous
Avatar’s 648 surrounding shown in FIG. 58, for example.
Substantial Similarity Comparison 1010 (i.e. performed by
or for Decision-making Unit, etc.) may find a Substantially
Similar Knowledge Cell 1110 that includes Opponent 644 or
other similar object, and that includes instructions (i.e.
Instruction Sets 600 or Operations 610, etc.) used to imple-
ment User’s Avatar’s 643 moves, actions, postures, behav-
iors, and/or other operations in similar circumstances. UAIE
can then autonomously implement moves, actions, postures,
behaviors, and/or other operations of Autonomous Avatar
648 such as those on Path H in FIG. 58 based on similar
moves, actions, postures, behaviors, and/or other operations
decided by User 50 in prior similar circumstances (i.e.
circumstances shown in FIG. 57, etc.). Any learning, antici-
pating, and/or other functionalities implemented using
Knowledgebase 530 and/or Knowledge Cells 800 can be
similarly implemented using Neural Network 850. For
example, Decision-making Unit 540 may search for a path
in Neural Network 850 that includes one or more similar
objects (i.e. Opponent 644, Forest 645, Rock 646, Pond 647,
etc.) and/or their properties as in Autonomous Avatar’s 648
surrounding shown in FIG. 58. Decision-making Unit 540
may find a Substantially Similar Path 855 that includes
Opponent 644 or other similar object, and that includes
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) used to implement User’s Avatar’s 643 moves, actions,
postures, behaviors, and/or other operations in similar cir-
cumstances. UAIE can then autonomously implement
moves, actions, postures, behaviors, and/or other operations
of Autonomous Avatar 648 such as those on Path H in FIG.
58 based on similar moves, actions, postures, behaviors,
and/or other operations decided by User 50 in prior similar
circumstances (i.e. circumstances shown in FIG. 57, etc.).

In some aspects, the moves, actions, postures, behaviors,
and/or other operations can be absolute in which case
Autonomous Avatar 648 or other autonomous object may
perform the same exact moves, actions, postures, behaviors,
and/or other operations as the ones stored in Substantially
Similar Knowledge Cell 1110 for given circumstances.
Absolute moves, actions, postures, behaviors, and/or other
operations can be implemented by absolute Instruction Sets
600 or Operations 610. Absolute moves, actions, postures,
behaviors, and/or other operations can be suitable for certain
types of games such as, for example, pinball simulations,

10

15

20

25

30

35

40

45

50

55

60

65

190

driving simulations, tetris-like games, chess-like games,
and/or others where terrain or number or types of objects
does not change substantially, and/or where moves, actions,
postures, behaviors, and/or other operations are limited in
variety. In other aspects, context reliant games such as 3D
games, flight simulations, strategic games, and/or others
may require performance of moves, actions, postures,
behaviors, and/or other operations relative to other objects in
the game where the terrain or circumstances change rapidly.
Relative moves, actions, postures, behaviors, and/or other
operations can be implemented by relative Instruction Sets
600 or Operations 610. As such, importance (i.e. as indicated
by importance Index 640 or another importance ranking
technique, etc.) or weight of contextual information (i.e.
Extra Info 630, etc.) may be more important than that of
Instruction Set Portions 620 in Substantial Similarity Com-
parisons 1010, for example. Context analysis or interpreta-
tion can also be used in context reliant games or other
applications. In one example, Decision-making Unit 540,
Context Interpreter 1120, and/or other element can analyze
one or more Substantially Similar Knowledge Cells 1110
and/or other information and infer that User 50 moved
User’s Avatar 643 toward Opponent 644 and used various
postures or behaviors (i.e. upright, crawling, defensive, etc.).
The inference that User’s Avatar 643 moved toward Oppo-
nent 644 can be drawn by computing that the distance
between User’s Avatar 643 and Opponent 644 decreased
and/or that User’s Avatar 643 maintained direction of move-
ment toward Opponent 644. The inference on the timing of
User’s Avatar’s 643 posture changes such as the change
from upright into crawling posture can be drawn by com-
puting User’s Avatar’s 643 distance from Opponent 644 to
be approaching Opponent’s 644 detection area or line of
sight. In some aspects, the computations can be performed
using coordinates of User’s Avatar 643, coordinates of
Opponent 644 or other objects, and/or other attributes,
properties, Extra Info 630, or information. Distance, direc-
tion, and/or other information can be computed or estimated
by using Pythagorean theorem, Euclidean distance formula,
trigonometry, and/or other theorems, formulas, or disci-
plines.

In other aspects, Autonomous Avatar’s 648 or other
autonomous object’s moves, actions, postures, behaviors,
and/or other operations can be based on any non-UAIE
system or process know in art such as, for example, moving
toward opponent or other object as soon as detected, moving
toward or through closest camouflage type object (i.e. Forest
645, Pond 647, etc.), moving toward or taking cover in
closest cover type object (i.e. Rock 646, building, etc.),
taking shortest path to target, taking fastest path to target,
taking best way around an obstacle, performing evasive or
other maneuvers, and/or other systems, processes, or func-
tions. Such non-UAIE systems or processes may include
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) that User 50 did not perform (i.e. not learned from User
50, etc.). In some aspects, these instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) can override User 50
learned instructions (i.e. Instruction Sets 600 or Operations
610, etc.). The override functionality enables Autonomous
Avatar 648 or other autonomous object to implement strat-
egies, actions, moves, postures, behaviors, and/or other
operations that were not learned through UAIE such as, for
example, a strategy to engage opponent wherever it may be
in the current field of view, a strategy to engage the closest
object (i.e. hide in a forest if forest is closest, cover behind
arock ifrock is closest, etc.), a strategy to engage a preferred
type of object first (i.e. hide in a forest if forest is within

US 9,443,192 Bl

191

sight, cover behind a rock if rock is in between user’s avatar
and opponent, etc.), and/or other strategies, actions, moves,
postures, behaviors, and/or other operations. A non-UAIE
system or process may include any instruction (i.e. Instruc-
tion Sets 600 or Operations 610, etc.) or function that was
not learned or generated through UAIE. In one example, if
Autonomous Avatar 648 comes within a certain distance
from a specific type of object (i.e. Forest 645, etc.), Game
Application 120 may direct Autonomous Avatar 648 into
Forest 645 based on forest preference method or function. In
another example where both Forest 645 and Opponent 644
are within Autonomous Avatar’s 648 detection area, if
Opponent 644 is closer than Forest 645, Game Application
120 may implement movement toward Opponent 644 based
on shortest path to target method or function. In yet another
example where Rock 646 and Opponent 644 are within
Autonomous Avatar’s 648 detection area, if Rock 646 is
closer than and located in a general direction of Opponent
644, Game Application 120 may implement movement
toward Rock 646 based on finding cover method or function.
In yet other aspects, a combination of methods or func-
tions can be utilized to direct moves, actions, postures,
behaviors, and/or other operations of Autonomous Avatar
648 or other autonomous object. In one example, a non-
UAIE system or process can be utilized to direct Autono-
mous Avatar 648 or other autonomous object in patrolling a
specific area in the game in a traversing, roaming, east to
west, circular, rectangular, zig-zag, spherical, or other pat-
tern. When Autonomous Avatar 648 or other autonomous
object encounters circumstances similar to any of the prior
learned circumstances, UAIE can take control and imple-
ment instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) to direct Autonomous Avatar 648 or
other autonomous object according to the stored knowledge
on how to move, act, behave, and/or otherwise operate in
those particular or similar circumstances. In another
example, while patrolling an area based on a non-UAIE
system or process, Autonomous Avatar 648 or other autono-
mous object may detect an opponent type object. UAIE may
recognize the circumstances as one of the previously stored
circumstances and take control from User 50, or another
system or process. Autonomous Avatar 648 or other autono-
mous object may defeat opponent under the control of UAIE
at which point UAIE can switch control to User 50, or
another system or process. In yet another example, UAIE
can take control from User 50, or a non-UAIE system or
process at any point such as to place Autonomous Avatar 648
or other autonomous object into a crawling posture when it
reaches Opponent’s 644 detection area or line of sight as
shown in FIG. 58. In yet another example, UAIE can release
control to User 50, or to a non-UAIE system or process at
any point such as to allow User 50, or a non-UAIE system
or process to move Autonomous Avatar 648 or other autono-
mous object further toward Opponent 644 after UAIE has
implemented a crawling posture. In general, UAIE can take
control over or release control from any of its related objects
at any time, remain in control for any period of time, and
share control with other systems or processes as needed.
In an example shown in FIG. 59, User 50 may consider
several paths of movement. User 50 may consider moving
User’s Avatar 643 on Path A through Forest 645 that
provides camouflage. User 50 may consider moving User’s
Avatar 643 on Path B directly toward Opponent 644. User 50
may consider moving User’s Avatar 643 on Path C toward
Rock 646 that provides cover. User 50 may consider moving
User’s Avatar 643 on Path D through Pond 647 that provides
camouflage. User 50 can move User’s Avatar 643 on any

5

10

15

20

25

30

35

40

45

50

55

60

65

192

other path that User 50 deems a good strategy to defeat
Opponent 644 or achieve other game goals. User’s Avatar
643 may be in Location Al with coordinates [5,5]. User 50
may decide to move User’s Avatar 643 into Location A2
with coordinates [5,6] on Path A toward Forest 645. Game
Application’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) that implement the move may include
a function such as moveAvatar(5, 6, . . .) that can be stored
along with any contextual, geo-spatial, situational, environ-
mental, and/or other information (i.e. Extra Info 630, etc.) as
previously described. For example, Extra Info 630 can store
User’s Avatar’s 643 current and prior coordinates, User’s
Avatar’s 643 posture, (i.e. upright posture, crawling posture,
etc.), coordinates of objects (i.e. Opponent 644, Forest 645,
Rock 646, Pond 647, etc.) surrounding User’s Avatar 643,
types of objects surrounding User’s Avatar 643, and/or other
contextual, geo-spatial, environmental, situational, and/or
other information. User 50 may then decide to move User’s
Avatar 643 into Location A3 with coordinates [5,7] toward
Forest 645, and so on. In some embodiments, in each
Location Al, A2, A3, A4, AS, etc., Game Application 120
can implement a move function, and/or other instruction (i.e.
Instruction Set 600, etc.) or function that can be disas-
sembled into its portions and stored in Operation 610 or
other repository along with any Extra Info 630. Operation
610 can then be stored in Operation List 510 that comprises
recently used or implemented (i.e. executed, etc.) Operations
610 or Instruction Sets 600. Knowledge Structuring Unit
520 may create a Knowledge Cell 800 from the Operation
List 510 and store the Knowledge Cell 800 in Knowledge-
base 530, thereby implementing learning of User’s Avatar’s
643 operations within Game Application 120 as previously
described. Any learning, anticipating, and/or other function-
alities implemented using Knowledgebase 530 and/or
Knowledge Cells 800 can be similarly implemented using
Neural Network 850. For example, instead of creating
Knowledge Cells 800 and storing them into Knowledgebase
530, Knowledge Structuring Unit 520 can apply Operations
610 from Operation List 510 onto a Neural Network 850,
thereby implementing learning of Game Application’s 120
operations as previously described. In some aspects, while
on the chosen path (i.e. path A, etc.), User 50 may also
decide to perform various defensive, offensive, evasive,
and/or other maneuvers and/or other operations such as, for
example, curved, circular, rectangular, zig-zag, or other
maneuvers and/or other operations that can also be learned
as described.

In an example shown in FIG. 60, Autonomous Avatar 648
or other autonomous object may include UAIE functional-
ities comprising knowledge (i.e. Knowledge Cells 800, etc.)
of moves, postures, actions, behaviors, and/or other opera-
tions learned from User 50 in past circumstances such as
circumstances shown in FIG. 59. Autonomous Avatar 648 or
other autonomous object may be near Opponent 644, Forest
645, Rock 646, Pond 647, and/or other objects. Decision-
making Unit 540 can search for a Knowledge Cell 800 that
includes one or more similar objects and/or their properties
as in Autonomous Avatar’s 648 surrounding shown in FIG.
60, for example. Importance Index 640 or weight of Extra
info 630 may be increased, as high, or higher than that of
Instruction Set Portions 620 for the type of game application
in question. Using these Importance Indexes 640 or weights,
Substantial Similarity Comparison 1010 (i.e. performed by
or for Decision-making Unit, etc.) may find a Substantially
Similar Knowledge Cell 1110 that includes same or similar
objects, and that includes instructions (i.e. Instruction Sets
600 or Operations 610, etc.) used to implement User’s

US 9,443,192 Bl

193

Avatar’s 643 moves, actions, postures, behaviors, and/or
other operations in similar circumstances. UAIE can then
autonomously implement moves, actions, postures, behav-
iors, and/or other operations of Autonomous Avatar 648 such
as those on Path M in FIG. 60 based on similar moves,
actions, postures, behaviors, and/or other operations decided
by User 50 in prior similar circumstances (i.e. circumstances
shown in FIG. 59, etc.) as previously described. Any learn-
ing, anticipating, and/or other functionalities implemented
using Knowledgebase 530 and/or Knowledge Cells 800 can
be similarly implemented using Neural Network 850. For
example, Decision-making Unit 540 may search for a path
in Neural Network 850 that includes one or more similar
objects and/or their properties as in Autonomous Avatar’s
648 surrounding shown in FIG. 60. Decision-making Unit
540 may find a Substantially Similar Path 855 that includes
Opponent 644 or other similar object, and that includes
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) used to implement User’s Avatar’s 643 moves, actions,
postures, behaviors, and/or other operations in similar cir-
cumstances. UAIE can then autonomously implement
moves, actions, postures, behaviors, and/or other operations
of Autonomous Avatar 648 such as those on Path M in FIG.
60 based on similar moves, actions, postures, behaviors,
and/or other operations decided by User 50 in prior similar
circumstances (i.e. circumstances shown in FIG. 59, etc.) as
previously described. Decision-making Unit 540, Context
Interpreter 1120, and/or other element with context inter-
preting functionalities can analyze one or more Substantially
Similar Knowledge Cells 1110 and/or other information and
infer that User 50 moved User’s Avatar 643 north toward
Forest 645. The inference that User’s Avatar 643 moved
north toward Forest 645 can be drawn by computing that the
distance between User’s Avatar 643 and Forest 645
decreased and/or that User’s Avatar 643 maintained direc-
tion of movement north toward Forest 645. A determination
can also be made that Forest 645 is located east of Autono-
mous Avatar 648. As such, movement coordinates stored in
Substantially Similar Knowledge Cell 1110 may be modified
or replaced to direct Autonomous Avatar 648 east toward
Forest 645. UAIE can then autonomously implement moves,
actions, postures, behaviors, and/or other operations of
Autonomous Avatar 648 or other autonomous object such as
moves on Path M in FIG. 60 based on similar moves,
actions, postures, behaviors, and/or other operations decided
by User 50 in prior similar circumstances (i.e. circumstances
shown in FIG. 59, etc.) adjusted for contextual information
as previously described.

In an example shown in FIG. 61, User 50 may consider
several paths of movement such as Path A through Forest
645 that provides camouflage, Path B directly toward Oppo-
nent 644, Path C toward Rock 646 that provides cover, Path
D through Pond 647 that provide camouflage, and/or other
path that User 50 deems a good strategy to defeat Opponent
644 or achieve other game goals. User’s Avatar 643 may be
in Location C1 with coordinates [5.5,5]. User 50 may decide
to move User’s Avatar 643 into Locations C2, C3, C4, C5,
etc. on Path C toward Rock 646. Game Application’s 120
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) that implement the moves may include a function such
as moveAvatar(5.5, 5, . . .) that can be disassembled and
stored along with any contextual, geo-spatial, situational,
environmental, and/or other information (i.e. Extra Info 630,
etc.) as previously described. In some aspects, Opponent
644, Forest 645, Rock 646, Pond 647, or other objects and/or
their properties within Area of Interest 649 can be stored as
Extra Info 630. Once covered behind Rock 646, User 50

10

15

20

25

30

35

40

45

50

55

60

65

194

may decide to wait a period of time for Opponent 644 to
approach. In some aspects, Opponent 644 can be a com-
puter-operated character programmed to engage User’s Ava-
tar 643 as soon as detected and, therefore, it may approach
User’s Avatar 643 around Rock 646. User 50 may then direct
User’s Avatar 643 to shoot or otherwise confront Opponent
644. In other aspects, Opponent 644 can be a human-
operated character whose user may decide to wait for User’s
Avatar 643 to approach first. After waiting a period of time,
User 50 may decide to move User’s Avatar 643 from around
Rock 646 toward Opponent 644 such as in Locations C6,
C7, C8, C9, C10, C11, etc. on Path C. In addition to the
moves. User 50 may also decide to perform various defen-
sive, offensive, evasive, and/or other moves, maneuvers,
actions, behaviors, postures, and/or other operations as
previously described such as curved, circular, rectangular,
zig-zag, and/or other maneuvers; walking, running, flying,
and/or other movements; upright, crawling, and/or other
postures; utilizing objects, blocking attacks, shooting at
opponent, waiting, and/or other actions or operations. Each
move, maneuver, action, behavior, posture, and/or other
operation can be implemented by Game Application 120
through one or more instructions (i.e. Instruction Sets 600,
etc.) or functions that can be disassembled into their portions
and stored in Operation 610 or other repository along with
any Extra Info 630. Operation 610 can then be stored in
Operation List 510 that comprises recently used or imple-
mented (i.e. executed, etc.) Operations 610 or Instruction
Sets 600. Knowledge Structuring Unit 520 may create a
Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of User’s Avatar’s 643 operations
within Game Application 120 as previously described. Any
learning, anticipating, and/or other functionalities imple-
mented using Knowledgebase 530 and/or Knowledge Cells
800 can be similarly implemented using Neural Network
850. For example, instead of creating Knowledge Cells 800
and storing them into Knowledgebase 530, Knowledge
Structuring Unit 520 can apply Operations 610 from Opera-
tion List 510 onto a Neural Network 850, thereby imple-
menting learning of Game Application’s 120 operations as
previously described.

In an example shown in FIG. 62, Autonomous Avatar 648
or other autonomous object may include UAIE functional-
ities comprising knowledge (i.e. Knowledge Cells 800, etc.)
of moves, postures, actions, behaviors, and/or other opera-
tions learned from User 50 in past circumstances such as
circumstances shown in FIG. 61. Opponent 644, Forest 645,
Rock 646, Pond 647, and/or other objects may be within
Autonomous Avatar’s 648 or other autonomous object’s
Area of Interest 649. Decision-making Unit 540 can search
for a Knowledge Cell 800 that includes one or more similar
objects and/or their properties as in Autonomous Avatar’s
648 Area of Interest 649 shown in FIG. 62, for example.
Importance Index 640 or weight of Extra Info 630 may be
increased, as high, or higher than that of Instruction Set
Portions 620 for the type of game application in question.
Using these Importance Indexes 640 or weights, Substantial
Similarity Comparison 1010 (i.e. performed by or for Deci-
sion-making Unit, etc.) may find a Substantially Similar
Knowledge Cell 1110 that includes same or similar objects
as those in Autonomous Avatar’s 648 Area of Interest 649,
and that includes instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) used to implement User’s Avatar’s 643
moves, actions, postures, behaviors, and/or other operations
in similar circumstances. UAIE can then autonomously
implement moves, actions, postures, behaviors, and/or other

US 9,443,192 Bl

195

operations of Autonomous Avatar 648 such as those on Path
K in FIG. 62 based on similar moves, actions, postures,
behaviors, and/or other operations decided by User 50 in
prior similar circumstances (i.e. circumstances shown in
FIG. 61, etc.) as previously described. Any learning, antici-
pating, and/or other functionalities implemented using
Knowledgebase 530 and/or Knowledge Cells 800 can be
similarly implemented using Neural Network 850. For
example, Decision-making Unit 540 may search for a path
in Neural Network 850 that includes one or more similar
objects and/or their properties as in Autonomous Avatar’s
648 surrounding shown in FIG. 62. Decision-making Unit
540 may find a Substantially Similar Path 855 that includes
Opponent 644 or other similar object, and that includes
instructions (i.e. Instruction Sets 600 or Operations 610, etc)
used to implement User’s Avatar’s 643 moves, actions,
postures, behaviors, and/or other operations in similar cir-
cumstances. UAIE can then autonomously implement
moves, actions, postures, behaviors, and/or other operations
of Autonomous Avatar 648 such as those on Path K in FIG.
62 based on similar moves, actions, postures, behaviors,
and/or other operations decided by User 50 in prior similar
circumstances (i.e. circumstances shown in FIG. 61, etc.) as
previously described. Decision-making Unit 540, Context
Interpreter 1120, and/or other element with context inter-
preting functionalities can analyze one or more Substantially
Similar Knowledge Cells 1110 and/or other information and
infer that User 50 moved User’s Avatar 643 toward Oppo-
nent 644 and took cover behind Rock 646. The inference that
User’s Avatar 643 moved toward Opponent 644 and took
cover behind Rock 646 can be drawn by computing that the
distance between User’s Avatar 643 and both Opponent 644
and Rock 646 decreased and/or that User’s Avatar 643
maintained general direction of movement toward both
Opponent 644 and Rock 646. In some aspects, a tolerance or
threshold can be utilized in the computation or analysis to
indicate whether Rock 646 may be too far from the path
toward Opponent 644 for Rock 646 to be of use as a cover
object or for an accurate inference to be drawn. A determi-
nation can also be made that Rock 646 is closer to Autono-
mous Avatar 648 than Opponent 644 and that Rock 646 is
located in a general direction (i.e. within certain tolerance,
etc.) of Opponent 644. As such, movement coordinates
stored in Substantially Similar Knowledge Cell 1110 can be
modified or replaced to direct Autonomous Avatar 648
toward Opponent 644 while bending Autonomous Avatar’s
648 path to take cover behind Rock 646. UAIE can then
autonomously implement moves, actions, postures, behav-
iors, and/or other operations of Autonomous Avatar 648 or
other autonomous object such as moves on Path K in FIG.
62 based on similar moves, actions, postures, behaviors,
and/or other operations decided by User 50 in prior similar
circumstances (i.e. circumstances shown in FIG. 61, etc.)
adjusted for contextual information as previously described.

In some embodiments, User’s Avatar 643, Autonomous
Avatar 648 or other autonomous object, or other object may
not need to track or be aware of all objects and/or their
properties in the game or on the screen, but track or be aware
of objects and/or their properties within an Area of Interest
649. This approach can save computing resources. In one
example, Area of Interest 649 may include a radial, circular,
elliptical, or other such area around User’s Avatar 643,
Autonomous Avatar 648 or other autonomous object, or
other object. In another example, Area of Interest 649 may
include a triangular, rectangular, octagonal or other such
area around User’s Avatar 643, Autonomous Avatar 648 or
other autonomous object, or other object. In yet another

10

15

20

25

30

35

40

45

50

55

60

65

196

example, Area of interest 649 may include a spherical,
cubical, pyramid-like or other such area around User’s
Avatar 643, Autonomous Avatar 648 or other autonomous
object, or other object. Any other Area of Interest 649 shape
can be utilized. In some aspects, Area of interest 649 can be
subdivided into sub-areas (i.e. sub-circles, sub-rectangles,
sub-spheres, etc.). Sub-areas can be used to classify objects
by distance from User’s Avatar 643, Autonomous Avatar 648
or other autonomous object, or other object. For example,
objects closer to User’s Avatar 643 may be more important
and may be assigned higher Importance Index 640 or weight
when stored as Extra info 630. User’s Avatar 643, Autono-
mous Avatar 648 or other autonomous object, or other object
can scan its surrounding by utilizing Area of Interest 649 or
detection area. In some embodiments, Area of Interest 649
can be used to activate autonomous operation of User’s
Avatar 643, Autonomous Avatar 648 or other autonomous
object, or other object. In one example, Autonomous Avatar
648 or other autonomous object may be operated by a
non-UAIE system or process (i.e. traversing system or
process, etc.) until UAIE finds a Knowledge Cell 800 that
includes similar objects and/or their properties as in current
Area of Interest 649 at which point UAIE can take control.
In another example, User’s Avatar 643 or other object may
be operated by User 50 until UAIE finds a Knowledge Cell
800 that includes similar objects and/or their properties as in
current Area of Interest 649 at which point UAIE can take
control. In yet another example, Autonomous Avatar 648 or
other autonomous object may be operated by a non-UAIE
system or process (i.e. traversing system or process, etc.)
until the system finds sufficient number or types of objects
and/or their properties to invoke UAIE functionalities at
which point UAIE can take control.

UAIE functionalities can be implemented in any type of
game application. In one example, learning a user’s steering
wheel moves and/or other operations for various road cir-
cumstances and performing autonomous steering wheel
moves and/or other operations in a car or other racing game
can be implemented. In another example, learning a user’s
moves, actions, postures, behaviors, and/or other operations
given various objects’ movements or other properties and
performing autonomous operations in a 3D game (i.e. first
shooter game, flight simulation, etc.) can be implemented. In
yet another example, learning a user’s moves, actions,
postures, behaviors, and/or other operations given certain
objects’ positions or other attributes and performing autono-
mous moves, actions, postures, behaviors, and/or other
operations in a strategic game can be implemented. In yet
another example, learning a user’s moves, actions, and/or
other operations given certain items’ existence, arrange-
ment, relationship, or other properties and performing
autonomous moves, actions, and/or other operations in a
tetris-like, word puzzle, or mind game can be implemented.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a game
application’s operations and of UAIE functionalities with
respect to game application, and while all possible embodi-
ments are too voluminous to describe, other embodiments
are within the scope of this disclosure.

Referring to FIG. 63, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a robot control applica-
tion or robotic application. Such embodiments may include
artificial intelligence that enables a robot or other such
device or application to learn the operation of the robot
control application and/or the robot, store this knowledge in
a knowledgebase, neural network, or other repository, and

US 9,443,192 Bl

197

enable autonomous operation of the robot control applica-
tion and/or the robot with partial, minimal, or no input from
a user and/or the environment.

UALIE can be used in a Robot 70 (i.e. Computing Device
70, etc.). Robot 70 may include Control Application 120 (i.e.
Software Application 120, etc.), UAIE, Acquisition and
Modification Interface 110, Artificial intelligence Unit 130,
Controller 929, Sensor Interface 925, Sensor 926, Motor
interface 927, Actuator 928, Memory 12, and Storage 27.
Other additional elements may be included as needed, or
some of the disclosed ones may be excluded, or a combi-
nation thereof may be utilized in alternate embodiments.

Robot 70 comprises the functionality for performing
robotic operations, and/or other functionalities. Robot 70
comprises the functionality for performing mechanical,
physical, or other operations. Robot 70 may include an
interface that enables Robot 70 to perform robotic function-
alities or mechanical operations. Robot 70 may include any
mechanical device with remote control capabilities. In some
aspects, Robot 70 can be a User 50 controlled robot. In other
aspects, Robot 70 can be a partially autonomous robot. In
other aspects, Robot 70 can be a fully autonomous robot.
Examples of Robot 70 include industrial robots, military
robots, factory robots, domestic robots, personal robots,
medical robots, and/or other robots. Additional examples of
robots include remote controlled ground, aerial, or water
vehicles, remote controlled toys, telesurgery (i.e. remote
surgery, etc.) systems, and/or other such devices. Further
examples of robots include auto-pilot capable machines
where control may be shared between a software application
and a user, and/or other such devices. Robot 70 can be
referred to as and comprises any features, functionalities,
and embodiments of Computing Device 70.

In some aspects, Control Application 120 comprises the
functionality for performing robotic operations on Robot 70,
and/or other functionalities. Control Application 120 com-
prises the functionality for controlling Robot 70. Control
Application 120 may receive inputs from a user and/or the
environment, employ some logic or rules, and implement
instructions to enable Robot 70 to perform various opera-
tions for a given set of inputs or circumstances. UAIE can
attach to and obtain Control Application’s 120 instructions,
data, and/or other information and modify execution and/or
functionality of Control Application 120, thereby providing
artificial intelligence functionalities to Control Application
120 as previously described. Control Application 120 can
reside in Robot 70 or on a Remote Computing Device 1310
accessible over a Network 1300, and if on a Remote
Computing Device 1310, Control Application 120 may be
available as a network service as previously described. In
some aspects, Control Application 120 can be implemented
in electronic circuitry as a hardware component such as a
chip, microcontroller, microprocessor, or other such device.
User 50 can operate Control Application 120 via Controller
929, Human-machine Interface 23, microphone, and/or
other input device. In addition to User 50 inputs, Control
Application 120 may receive sensory or other inputs from
the environment. Control Application 120 can control any
element of Robot 70 such as engage a motor or other
elements to enable Robot 70 to perform operations for which
it was designed. Control Application 120 can be referred to
as and comprises any features, functionalities, and embodi-
ments of Software Application 120.

Controller 929 comprises the functionality for enabling
input of robot operating instructions, data, and/or other
inputs, and/or other functionalities. Controller 929 may
include any means of inputting operating instructions, data,

25

30

40

45

55

198

and/or other inputs such as by pressing keys or buttons,
touching keys or buttons, clicking keys or buttons, moving
or sliding physical or graphical components, and/or manipu-
lating other physical, graphical, and/or other elements.
Examples of Controller 929 include a joystick, a keyboard,
a keypad, a mouse, a steering wheel, a glove, a touchscreen,
a control wheel, a track point, a remote controller, or other
input or control device. In some aspects, Controller 929 may
include Microphone 754 and Speech Recognizer 753 for
user’s voice input as previously described.

Sensor 926 comprises the functionality for detecting
objects, events, or other activities in the sensor’s environ-
ment, and/or other functionalities. Robot 70 may include one
or more Sensors 926 to enable Robot 70 to perceive and/or
interact with its environment (i.e. Environment 58, etc.).
Examples of Sensor 926 include vision (i.e. video or other
camera, etc.), sound (i.e. microphone, etc.), tactile, motion,
physical contact, smell, taste, magnetic, electro-magnetic,
radio (i.e. radio antenna, etc.), radar, sonar, and/or other
sensors or detectors.

Sensor Interface 925 comprises the functionality for pro-
cessing input events of Sensor 926 and/or other input
devices for use by Control Application 120 or other dis-
closed elements, and/or other functionalities. Examples of
Sensor Interface 925 include a sensor listener, a device
driver (i.e. audio, video, or other driver), a speech recog-
nizer, a video interpreter, and/or other interface.

Actuator 928 comprises the functionality for moving an
object to which it is attached, and/or other functionalities.
Robot 70 may include one or more Actuators 928 to enable
Robot 70 to perform mechanical, physical, or other opera-
tions and/or to interact with its environment (i.e. Environ-
ment 58, etc.). Actuators 928 can be utilized for implement-
ing movements, actions, behaviors, maneuvers, and/or other
operations as directed by Control Application 120. In some
aspects, Actuator 928 itself can act upon the environment. In
other aspects, Actuator 928 can be connected to or coupled
with an element such as a wheel, arm, or other element to act
upon the environment. Examples of Actuator 928 include a
motor, a linear motor, a servomotor, a hydraulic element, a
pneumatic element, an electro-magnetic element, a spring
element, and/or other actuators. Examples of types of Actua-
tor 928 include a rotary actuator, a linear actuator, and/or
other types of actuators.

Motor interface 927 comprises the functionality for pro-
cessing output from Control Application 120 or other ele-
ments for use by Actuator 928, and/or other functionalities.
Motor Interface 927 comprises the functionality for process-
ing control signals or instructions from Control Application
120 or other disclosed elements to control Actuator 928.
Examples of Motor Interface 927 include a microcontroller,
a device driver, a device programming interface, and/or
other interfaces.

In one example, when User 50 wishes to move Robot 70,
User 50 can issue an operating instruction to Control Appli-
cation 120 via Controller 929 and Control Application 120
may engage a motor (i.e. Actuator 928, etc.) to move Robot
70. In another example, when User 50 wishes to lift an arm
of Robot 70, User 50 may issue an operating instruction to
Control Application 120 via Controller 929 and Control
Application 120 may engage a hydraulic element (i.e. Actua-
tor 928, etc.) to lift the arm. In yet another example, when
User 50 wishes to pick up an object with Robot 70, User 50
may issue an operating instruction to Control Application
120 via Controller 929 and Control Application 120 may
engage one or more motors, hydraulic, pneumatic, or other
elements (i.e. Actuators 928, etc.) to pick up the object.

US 9,443,192 Bl

199

Various other operating instructions and/or operations can be
implemented with Robot 70 examples of which include
pausing Robot 70, stopping Robot 70, moving Robot 70 in
various directions (i.e. forward, backward, right, left, up,
down, angular, diagonal, etc.), selecting or utilizing an
object with Robot 70, communicating with other robots or
devices, and/or other instructions or operations. UAIE can
learn Control Application’s 120 instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) and/or contextual infor-
mation (i.e. Extra Info 630, etc.) used to implement opera-
tions such as moving Robot 70, lifting Robot’s 70 arm,
picking up an object with Robot 70, and/or other operations
by storing them in Knowledgebase 530, Neural Network
850, or other repository, and anticipate future instructions
(i.e. anticipatory Instruction Sets 600 or Operations 610,
etc.) as previously described.

In some exemplary embodiments, Robot 70 comprises an
industrial machine such as a loader with computing capa-
bilities and/or ability to run Control Application 120 that
controls or assists in controlling the loader. A loader may be
a type of heavy machine with a mounted bucket used to
move material (i.e. sand, gravel, snow, etc.) from one
location to another. In one example, User 50 may direct the
loader (i.e. Robot 70, etc.) to pick up material with the
bucket from a pile. In another example, User 50 may direct
the loader to move to a delivery location. In yet another
example, User 50 may direct the loader to perform various
moves, maneuvers, and/or other operations to overcome an
obstacle such as move around the obstacle, move the
obstacle, and/or perform other moves, maneuvers, and/or
operations with respect to the obstacle. In yet another
example, the loader may detect a moving object or person
through a sensor (i.e. video or motion sensor, etc.) and alert
User 50, and User 50 may direct loader to move around the
object or person, stop and wait for the object or person to
pass, and/or perform other moves, maneuvers, and/or opera-
tions with respect to the object or person. In yet another
example, the loader may detect a moving object or person
through a sensor (i.e. video or motion sensor, etc.) and
Control Application 120 may direct loader to move around
the object or person, stop and wait for the object or person
to pass, and/or perform other moves, maneuvers, and/or
operations with respect to the object or person based on a
function or program. In some aspects, each type of obstacle
or object can be overcome by performing specific moves,
maneuvers, and/or other operations for that type of obstacle
or object. In yet another example, User 50 may direct loader
(i.e. Robot 70, etc.) to unload material from the bucket to a
delivery location. In yet another example, User 50 may
direct the loader to move back into the original location to
pick up additional material. As User 50 directs the loader to
perform moves, maneuvers, and/or other operations in each
of the examples above, UAIE can learn Control Applica-
tion’s 120 instructions (i.e. Instruction Set 600 or Operation
610, etc.) and/or contextual information (i.e. Extra Info 630,
etc.) used to implement moves, maneuvers, and/or other
operations such as picking up material, moving the loader,
overcoming an obstacle or object, unloading material, mov-
ing into original location, and/or other moves, maneuvers, or
operations. UAIE can also anticipate future instructions (i.e.
anticipatory instruction Sets 600 or Operations 610, etc.) for
picking up material, moving the loader, overcoming an
obstacle or object, unloading material, moving into original
location, and/or performing other moves, maneuvers, or
operations autonomously as previously described.

In other exemplary embodiments, similar to the previ-
ously described game application examples, Sensor 926 (i.e.

10

15

20

25

30

35

40

45

50

55

60

65

200

video or other camera, etc.) can be utilized to detect objects
in Robot’s 70 surrounding or area of interest. Objects in
Robot’s 70 surrounding can be detected and/or tracked by
any of the object recognition systems, techniques, or tools
known in art examples of which include deep neural net-
works, convolutional neural networks, OpenCV (Open
Source Computer Vision) library, CamFind API, Kooaba,
6px APL, Dextro API, and/or others. In some aspects, object
recognition techniques or tools may generally involve iden-
tifying and/or analyzing object features such as lines, edges,
ridge, corners or blobs, regions, and/or their relative posi-
tions, sizes, shapes, etc., which may then be used to search
for images with matching features. Also, similar to the
previously described game application examples. User 50
may consider several paths of movement relative to objects
in Robot’s 70 surrounding. User 50 may choose a path that
best accomplishes User’s 50 goals. In one example, User 50
may direct Robot 70 (i.e. loader, etc.) to move around the
back of a moving truck (i.e. truck is in Robot’s 70 way, etc.)
in order to safely reach Robot’s 70 target (i.e. a pile of
material, etc.). In another example, User 50 may direct
Robot 70 (i.e. loader, etc.) to stop for a person to pass and
then continue on its path to Robot’s 70 target. Control
Application’s 120 instructions (i.e. Instruction Sets 600 or
Operations 610, etc.) that implement the moves may include
a function such as moveRobot(Angle, Distance, . . .) that
can be stored along with any contextual, geo-spatial, situ-
ational, environmental, and/or other information (i.e. Extra
Info 630, etc.) as previously described. For example, Extra
Info 630 can store Robot’s 70 current and prior positions
(i.e. positions relative to an object or reference point, GPS
coordinates, etc.), positions of objects in Robot’s 70 sur-
rounding, types (i.e. truck, person, etc.) of objects in Robot’s
70 surrounding, and/or other contextual, geo-spatial, envi-
ronmental, situational, and/or other information. In some
embodiments, for each move, action, behavior, maneuver,
and/or other operation, Control Application 120 can imple-
ment a move function and/or other instruction (i.e. Instruc-
tion Set 600, etc.) or function that can be disassembled into
its portions and stored in Operation 610 or other repository
along with any Extra Info 630. Operation 610 can then be
stored in Operation List 510 that comprises recently used or
implemented (i.e. executed, etc.) Operations 610 or Instruc-
tion Sets 600. Knowledge Structuring Unit 520 may create
a Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of Control Application’s 120 opera-
tions as previously described. Also, similar to the previously
described game application examples, autonomous Robot 70
(i.e. Robot 70 controlled by UAIE, etc.) may include UAIE
functionalities comprising knowledge (i.e. Knowledge Cells
800, etc.) of moves, actions, behaviors, maneuvers, and/or
other operations learned from User 50 in past circumstances
such as circumstances including the truck, person, or other
objects described above. Autonomous Robot 70 may
encounter a truck, person, and/or other objects in future
circumstances. Decision-making Unit 540 can search for a
Knowledge Cell 800 that includes one or more similar
objects and/or their properties as in autonomous Robot’s 70
surrounding. Decision-making Unit may find a Substantially
Similar Knowledge Cell 1110 that includes same or similar
objects, and that includes instructions (i.e. Instruction Sets
600 or Operations 610, etc.) used to implement Robot’s 70
moves, actions, behaviors, maneuvers, and/or other opera-
tions in similar circumstances. UAIE can then autonomously
implement moves, actions, behaviors, maneuvers, and/or
other operations of autonomous Robot 70 such as moving

US 9,443,192 Bl

201

around the back of the truck, stopping for a person, or
performing other operations based on similar moves,
actions, behaviors, maneuvers, and/or other operations
decided by User 50 in prior similar circumstances as previ-
ously described.

In further exemplary embodiments, Robot 70 may be a
remote controlled toy such as a remote controlled vehicle
with computing capabilities and/or ability to run Control
Application 120 that controls or assists in controlling the
remote controlled vehicle. In one example, User 50 may
direct the remote controlled vehicle (i.e. Robot 70, etc.) to
back away from an object after colliding with it. In another
example, User 50 may direct the remote controlled vehicle
to perform various moves, maneuvers, and/or other opera-
tions when moving over stairs or other types of terrains. In
yet another example, the remote controlled vehicle may
detect stairs or other type of terrain through a sensor (i.e.
video sensor, radar, etc.) and Control Application 120 may
direct remote controlled vehicle to perform various moves,
maneuvers, and/or other operations when moving over stairs
or other types of terrains based on a function or program. In
some aspects, each type of terrain can be handled by
performing specific moves, maneuvers, and/or other opera-
tions for that type of terrain. In yet another example, User 50
may direct remote controlled vehicle (i.e. Robot 70, etc.) to
perform various flips or other tricks that User 50 finds
amusing. In yet another example, User 50 may direct remote
controlled vehicle (i.e. Robot 70, etc.) to a charging station
to be recharged. As User 50 performs moves, maneuvers,
and/or other operations in each of the examples above,
UALIE can learn Control Application’s 120 instructions (i.e.
Instruction Set 600 or Operation 610, etc.) and/or contextual
information (i.e. Extra Info 630, etc.) used to implement the
moves, maneuvers, and/or other operations such as backing
away after colliding with an object, performing specific
moves for specific types of terrains, performing flips or other
tricks, moving into a charging station, and/or other moves,
maneuvers, or operations. UAIE can also anticipate future
instructions (i.e. anticipatory Instruction Sets 600 or Opera-
tions 610, etc.) for backing away after colliding with an
object, performing specific moves for specific types of
terrains, performing flips or other tricks, moving into a
charging station, and/or performing other moves, maneu-
vers, or operations autonomously as previously described.

In further exemplary embodiments, Robot 70 may be an
autonomous robot. As such, Robot 70 can be controlled by
Control Application 120 that provides autonomous function-
alities to Robot 70 through various non-UAIE systems or
processes. In one example, Robot 70 may detect an object
through its physical contact sensor and Control Application
120 may execute one or more instructions (i.e. Instruction
Sets 600 or Operations 610, etc.) to move Robot 70 around
the object. In another example, Robot 70 may detect an
object through its vision sensor (i.e. video or other camera,
etc.) and Control Application 120 may execute one or more
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) to move Robot 70 closer to the object. In yet another
example, Robot 70 may detect sound through its sound
sensor (i.e. microphone, etc.) and Control Application 120
may execute one or more instructions (i.e. instruction Sets
600 or Operations 610, etc.) to stop Robot 70 for best speech
recognition. In yet another example, Robot 70 may detect a
radio signal through its radio sensor (i.e. radio antenna, etc.)
and Control Application 120 may execute one or more
instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) to position Robot 70 for best radio signal reception.
Any other sensory inputs can be received and corresponding

40

45

55

202

operations can be performed in other examples. In some
embodiments involving autonomous robots, UAIE can serve
as a learning system to learn or record Control Application’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement autonomous Robot’s 70 operations in
various circumstances. This knowledge (i.e. Knowledgebase
530, Knowledge Cells 800, etc.) can be loaded into another
robot, device, machine, and/or application to provide pre-
learned knowledge as previously described. The robot,
device, machine, and/or application into which the knowl-
edge is loaded may then implement anticipatory instructions
(i.e. anticipatory Instruction Sets 600 or Operations 610,
etc.) included in the loaded Knowledgebase 530 or Knowl-
edge Cells 800. In some aspects, UAIE can take control from
or release control to Control Application 120 and/or any
non-UAIE system or process and therefore control Robot 70
as previously described. Similar to Knowledgebase 530
and/or Knowledge Cells 800, Neural network 850 can also
be used to store and/or transfer knowledge of Control
Application’s 120 operations among various robots, devices,
machines, and/or applications to provide pre-learned knowl-
edge. In each of the preceding examples, UAIE can learn
Control Application’s 120 instructions (i.e. Instruction Sets
600 or Operations 610, etc.) and/or contextual information
(i.e. Extra Info 630, etc.) used to implement one or more
operations. The instructions (i.e. Instruction Sets 600, etc.)
can be disassembled into their portions and stored in Opera-
tion 610 or other repository along with any Extra Info 630.
Operation 610 can then be stored in Operation List 510 that
comprises recently used or implemented (i.e. executed, etc.)
Operations 610 or Instruction Sets 600. Knowledge Struc-
turing Unit 520 may create a Knowledge Cell 800 from the
Operation List 510 and store the Knowledge Cell 800 in
Knowledgebase 530, thereby implementing learning of Con-
trol Application’s 120 operations as previously described.
Furthermore, Decision-making Unit 540 may search for a
Knowledge Cell 800 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Knowl-
edge Cell 1110 that includes such comparative instructions
(i.e. Instruction Sets 600 or Operations 610, etc.). Substan-
tially Similar Knowledge Cell 1110 may also include antici-
patory instructions (i.e. anticipatory Instruction Sets 600 or
Operations 610, etc.) used to implement subsequent opera-
tions. UAIE can then implement the subsequent operations
autonomously based on similar operations performed in
prior similar circumstances, thereby implementing anticipa-
tion of Control Application’s 120 operations as previously
described.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-
edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Control
Application’s 120 operations as previously described. Fur-
thermore, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path

US 9,443,192 Bl

203

855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Control Application’s
120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a robot’s
and/or robot control application’s operations and of UAIE
functionalities with respect to robot and/or robot control
application, and while all possible embodiments are too
voluminous to describe, other embodiments are within the
scope of this disclosure.

Referring to FIG. 64, the teaching presented by the
disclosure can be implemented in exemplary embodiments
to provide UAIE functionalities for a database application.
Such embodiments may include artificial intelligence that
enables a server (i.e. database server, computer, etc.) or other
such device or application to learn the operation of the
database application, store this knowledge in a knowledge-
base, neural network 850, or other repository, and enable
autonomous operation of the database application with par-
tial, minimal, or no user input to help the user in his/her use
of the database application.

UALIE can be used on a Server 70 (i.e. Computing Device
70, etc.). Server 70 may include Database Application 120
(i.e. Software Application 120, etc.), UAIE, Acquisition and
Modification interface 110, Artificial Intelligence Unit 130,
Display 21, Human-machine Interface 23, Memory 12, and
Storage 27. Other additional elements may be included as
needed, or some of the disclosed ones may be excluded, or
a combination thereof may be utilized in alternate embodi-
ments.

Server 70 comprises the functionality for performing
computing or processing operations, and/or other function-
alities. Server 70 comprises any computing device capable
of running or executing Database Application 120. Server 70
can be implemented as a local server on the user’s comput-
ing device (i.e. Computing Device 70, etc.) as shown. Server
70 can also be implemented as a remote server or Remote
Computing Device 1310 accessible via Network 1300 as
previously described. Server 70 can be referred to as and
comprises any features, functionalities, and embodiments of
Computing Device 70.

In some aspects, Database Application 120 comprises the
functionality for performing database operations on Server
70 or other computing device, and/or other functionalities.
Database Application 120 comprises the functionality for
storing, managing, and/or manipulating data. Examples of
Database Application 120 include a database management
system (DBMS), any database, an application or program
using a DBMS or a database as the underlying data source,
an interface for managing data, any data management appli-
cation, and/or other database applications. UAIE can attach
to and obtain Database Application’s 120 instructions, data,
and/or other information and modify execution and/or func-
tionality of Database Application 120, thereby providing
artificial intelligence functionalities to Database Application
120 as previously described. Database Application 120 can
reside on Server 70 or on Remote Computing Device 1310
accessible over Network 1300 as a network service as
previously described. Database Application 120 can also
reside locally on user’s personal computing device in alter-
nate embodiments. User 50 can operate Database Applica-
tion 120 via Human-machine Interface 23, and/or other
input device. Database Application 120 can be referred to as

10

15

20

25

30

35

40

45

50

55

60

65

204

and comprises any features, functionalities, and embodi-
ments of Software Application 120.

In one example, when User 50 wishes to create a database
in Database Application 120, User 50 may issue an operating
instruction (i.e. CREATE DATABASE SQL statement, etc.)
to Database Application 120 via Human-machine Interface
23 (i.e. keyboard, etc.) to create the database. Database
Application 120 can then execute the SQL statement, create
the new database in its internal file and/or data structure, and
make the new database available to the user. In another
example, when User 50 wishes to delete a table in Database
Application 120, User 50 may issue an operating instruction
(i.e. DROP TABLE SQL statement, etc.) to Database Appli-
cation 120 via Human-machine Interface 23 to delete the
table. Database Application 120 can then execute the SQL
statement and delete the table from its internal file and/or
data structure. In a further example, when User 50 wishes to
insert data (i.e. one or more rows of data, etc.) into a table
in Database Application 120, User 50 may issue an operating
instruction (i.e. INSERT SQL statement, etc.) to Database
Application 120 via Human-machine Interface 23 to insert
the data. Database Application 120 can then execute the
SQL statement and insert the data into the table. In a further
example, when User 50 wishes to delete data (i.e. one or
more rows of data, etc.) from a table in Database Application
120, User 50 may issue an operating instruction (i.e.
DELETE SQL statement, etc.) to Database Application 120
via Human-machine Interface 23 to delete the data. Database
Application 120 can then execute the SQL statement and
delete the data from the table. Various other operating
instructions and/or operations can be implemented in Data-
base Application 120 examples of which include accessing,
modifying, creating, or deleting a database; accessing, modi-
fying, creating, or deleting a table of a database; accessing,
modifying, creating, deleting, searching, sorting, or rear-
ranging of a row, column, or cell (i.e. also referred to as data,
etc.) within a table; accessing, modifying, creating, or delet-
ing a report/view, relation, user account, setting, and/or other
elements or objects. Any of the operating instructions (i.e.
SQL statements, etc.) given to Database Application 120 by
User 50 can be inputted by User 50 as text or issued through
an application that generates operating instructions (i.e. SQL
statements, etc.) understood by Database Application 120.
Examples of such applications include a report generating
application (i.e. Chrystal Reports, etc.), a visual database
application (i.e. Microsoft Access, etc.), and/or other appli-
cations that provide a graphical user interface comprising
input fields, selectable lists, drop-down menus, buttons, or
other graphical elements to enable a User 50 to issue
operating instructions to Database Application 120 in a point
and click manner without typing SQL code. UAIE can learn
Database Application’s 120 instructions (i.e. Instruction Sets
600 or Operations 610, etc.) and/or contextual information
(i.e. Extra Info 630, etc.) used to implement operations such
as creating a database, deleting a table, inserting data,
deleting data, and/or other operations by storing them in
Knowledgebase 530, Neural Network 850, or other reposi-
tory, and anticipate future instructions (i.e. anticipatory
Instruction Sets 600 or Operations 610, etc.) as previously
described.

In some exemplary embodiments, Server 70 comprises a
computer running Database Application 120. In one
example, User 50 may perform insert, update, delete, and/or
other operations on one or more tables in Database Appli-
cation 120. Such operations on Database Application 120
can be performed in a business setting when an event occurs
such as procurement of an item (i.e. raw material, etc.),

US 9,443,192 Bl

205

production of an item (i.e. finished good, etc.), change of an
item, sale of an item, and/or other event. Such operations on
Database Application 120 can also be performed in a per-
son’s daily activities when an event occurs such as down-
load of an item (i.e. song, pictur), movie, etc.), creation of
an item (i.e. captured photograph, etc.), change of an item,
sale of an item, or other event. After performing one or more
of these operations, UAIE can learn Database Application’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement these operations, and then perform future
insert, update, delete, and/or other operations autonomously
as previously described. In another example, User 50 may
perform daily, weekly, monthly, yearly, and/or other periodic
maintenance tasks on Database Application 120 such as
performing backup of one or more tables. After performing
one or more periodic table backups, UAIE can learn Data-
base Application’s 120 instructions (i.e. Instruction Sets 600
or Operations 610, etc.) and/or contextual information (i.e.
Extra Info 630, etc.) used to implement the table backups
and their timing (i.e. using time stamp, etc.), and then
perform future table backups autonomously as previously
described. In yet another example, User 50 may perform
reporting from Database Application 120 such as creating
financial reports. This type of reporting is often a daily,
weekly, monthly, and/or yearly scheduled process of creat-
ing same or similar reports with updated times, dates, or
other filtering information. After creating one or more of
these periodic reports, UAIE can learn Database Applica-
tion’s 120 instructions (i.e. Instruction Sets 600 or Opera-
tions 610, etc.) and/or contextual information (i.e. Extra Info
630, etc.) used to create the reports and their timing (i.e.
using time stamp, etc.), and then create future reports
autonomously as previously described. In each of the pre-
ceding examples, UAIE can learn Database Application’s
120 instructions (i.e. Instruction Sets 600 or Operations 610,
etc.) and/or contextual information (i.e. Extra Info 630, etc.)
used to implement one or more operations. The instructions
(i.e. Instruction Sets 600, etc.) can be disassembled into their
portions and stored in Operation 610 or other repository
along with any Extra Info 630. Operation 610 can then be
stored in Operation List 510 that comprises recently used or
implemented (i.e. executed, etc.) Operations 610 or Instruc-
tion Sets 600. Knowledge Structuring Unit 520 may create
a Knowledge Cell 800 from the Operation List 510 and store
the Knowledge Cell 800 in Knowledgebase 530, thereby
implementing learning of Database Application’s 120 opera-
tions as previously described. Furthermore, Decision-mak-
ing Unit 540 may search for a Knowledge Cell 800 that
includes comparative instructions (i.e. comparative Instruc-
tion Sets 600 or Operations 610, etc.) used to implement one
or more operations. Decision-making Unit 540 may find a
Substantially Similar Knowledge Cell 1110 that includes
such comparative instructions (i.e. Instruction Sets 600 or
Operations 610, etc.). Substantially Similar Knowledge Cell
1110 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Database Applica-
tion’s 120 operations as previously described.

Any learning, anticipating, and/or other functionalities
implemented using Knowledgebase 530 and/or Knowledge
Cells 800 can be similarly implemented using Neural Net-
work 850. In each of the preceding examples, instead of
creating Knowledge Cells 800 and storing them into Knowl-

25

30

35

40

45

50

55

60

206

edgebase 530, Knowledge Structuring Unit 520 can apply
Operations 610 from Operation List 510 onto a Neural
Network 850, thereby implementing learning of Database
Application’s 120 operations as previously described. Fur-
thermore, Decision-making Unit 540 can search for a path in
Neural Network 850 that includes comparative instructions
(i.e. comparative Instruction Sets 600 or Operations 610,
etc.) used to implement one or more operations. Decision-
making Unit 540 may find a Substantially Similar Path 855
that includes such comparative instructions (i.e. Instruction
Sets 600 or Operations 610, etc.). Substantially Similar Path
855 may also include anticipatory instructions (i.e. antici-
patory Instruction Sets 600 or Operations 610, etc.) used to
implement subsequent operations. UAIE can then imple-
ment the subsequent operations autonomously based on
similar operations performed in prior similar circumstances,
thereby implementing anticipation of Database Applica-
tion’s 120 operations as previously described.

One of ordinary skill in art will understand that the above
exemplary embodiments are merely examples of a database
application’s operations and of UAIE functionalities with
respect to database application, and while all possible
embodiments are too voluminous to describe, other embodi-
ments are within the scope of this disclosure.

One of ordinary skill in art will also understand that the
teaching presented by the disclosure enables learning and/or
anticipation of any other items such as any data, data
structures, or objects by utilizing the previously described
Knowledge Cells 800, Knowledgebase 530, Neural Network
850, and/or other elements or functionalities.

It must be noted that as used herein and in the appended
claims, the singular forms “a”, “an”, and “the” include plural
referents unless the context clearly dictates otherwise.

A number of embodiments have been described herein.
While this disclosure contains many specific implementa-
tion details, these should not be construed as limitations on
the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular
embodiments. It should be understood that various modifi-
cations can be made without departing from the spirit and
scope of the invention. The logic flows depicted in the
figures do not require the particular order shown, or sequen-
tial order, to achieve desirable results. In addition, other or
additional steps, elements, or connections can be included,
or some of the steps, elements, or connections can be
eliminated, or a combination thereof can be utilized in the
described flows, illustrations, or descriptions. Further, the
various aspects of the disclosed devices, apparatuses, sys-
tems, and/or methods can be combined in whole or in part
with each other to produce additional implementations.
Moreover, separation of various components in the embodi-
ments described herein should not be understood as requir-
ing such separation in all embodiments, and it should be
understood that the described components can generally be
integrated together in a single software product or packaged
into multiple software products. Accordingly, other embodi-
ments are within the scope of the following claims.

The invention claimed is:

1. A system for autonomous application operating, the
system implemented on one or more computing devices, the
system comprising:

a computing device including one or more processor

circuits coupled to a memory unit;

an application, running on the one or more processor

circuits, for performing operations on the computing
device;

US 9,443,192 Bl

207

an interface configured to receive a first instruction set
and a second instruction set, the interface further con-
figured to receive a new instruction set, wherein the
first, the second, and the new instruction sets are
executed by the one or more processor circuits and are
part of the application for performing operations on the
computing device;

a neural network configured to store at least one portion
of the first instruction set into a first node of the neural
network and at least one portion of the second instruc-
tion set into a second node of the neural network, the
neural network comprising a plurality of portions of
instruction sets, wherein the first instruction set
includes a comparative instruction set whose stored
portions can be used for comparisons with portions of
the new instruction set, and the second instruction set
includes an anticipatory instruction set whose stored
portions can be used for anticipation of an instruction
set subsequent to the new instruction set; and

a decision-making unit configured to:

compare at least one portion of the new instruction set
with at least one portion of the first instruction set from
the neural network, and

determine that there is a match between at least a thresh-
old number of portions of the new instruction set and at
least a threshold number of portions of the first instruc-
tion set from the neural network,

wherein the one or more processor circuits execute the
second instruction set from the neural network in
response to the determination of the decision-making
unit.

2. The system of claim 1, wherein the interface, the neural
network, and the decision-making unit are part of, operating
on, or coupled to the one or more processor circuits.

3. The system of claim 1, wherein the receiving the first,
the second, and the new instruction sets includes at least one
of: a manual, an automatic, a dynamic, or a just in time (JIT)
instrumentation of the application.

4. The system of claim 1, wherein the receiving the first,
the second, and the new instruction sets includes a tracing of
the application or the one or more processor circuits.

5. The system of claim 1, wherein the receiving the first,
the second, and the new instruction sets includes receiving
the first, the second, and the new instruction sets at the
application’s runtime.

6. The system of claim 1, wherein the computing device
includes a device whose operation is affected at least in part
by the one or more processor circuits.

7. The system of claim 1, wherein the interface, the neural
network, and the decision-making unit are part of, operating
on, or coupled to the computing device.

8. The system of claim 1, wherein the first node is part of
a first layer of the neural network and the second node is part
of a second layer of the neural network.

9. The system of claim 8, wherein the first layer includes
a comparative layer and the second layer includes an antici-
patory layer.

10. The system of claim 1, wherein the first node of the
neural network is connected to the second node of the neural
network by a connection.

11. The system of claim 1, wherein the neural network
includes a remote or a global neural network operating on a
remote computing device.

12. The system of claim 1, wherein the neural network
includes a data structure comprising a plurality of nodes
interconnected by one or more connections.

10

15

20

25

30

35

40

45

50

55

60

65

208

13. The system of claim 1, wherein the determining that
there is a match between at least the threshold number of
portions of the new instruction set and at least the threshold
number of portions of the first instruction set from the neural
network includes determining that there is a match between
at least one portion of the new instruction set and at least one
portion of the first instruction set from the neural network.
14. The system of claim 1, wherein the application
includes at least one of: a web browser, a word processing
application, an operating system, a media application, a
global positioning system application, a game application, a
robot control application, a database application, a program
hardcoded on the one or more processor circuits, a program
hardcoded on a hardware element, or an executable pro-
gram.
15. A non-transitory computer storage medium having a
computer program stored thereon, the program comprising
instructions that when executed by one or more computing
devices cause the one or more computing devices to perform
operations comprising:
receiving a first instruction set and a second instruction
set, wherein the first and the second instruction sets are
executed by one or more processor circuits and are part
of an application for performing operations on a com-
puting device;
storing at least one portion of the first instruction set into
a first node of a neural network and at least one portion
of the second instruction set into a second node of the
neural network, the neural network comprising a plu-
rality of portions of instruction sets, wherein the first
instruction set includes a comparative instruction set
whose stored portions can be used for comparisons
with portions of a new instruction set, and the second
instruction set includes an anticipatory instruction set
whose stored portions can be used for anticipation of an
instruction set subsequent to the new instruction set;

receiving the new instruction set, wherein the new
instruction set is executed by the one or more processor
circuits and is part of the application for performing
operations on the computing device;

comparing at least one portion of the new instruction set

with at least one portion of the first instruction set from
the neural network;
determining that there is a match between at least a
threshold number of portions of the new instruction set
and at least a threshold number of portions of the first
instruction set from the neural network; and

executing the second instruction set from the neural
network by the one or more processor circuits in
response to the determining that there is a match
between at least the threshold number of portions of the
new instruction set and at least the threshold number of
portions of the first instruction set from the neural
network.

16. The non-transitory computer storage medium of claim
15, wherein the computing device includes a device whose
operation is affected at least in part by the one or more
processor circuits.

17. The non-transitory computer storage medium of claim
15, wherein the neural network includes a data structure
comprising a plurality of nodes interconnected by one or
more connections.

18. A method comprising:

(a) receiving, by one or more processor circuits via an

interface, a first instruction set and a second instruction
set, wherein the first and the second instruction sets are

US 9,443,192 Bl

209

executed by the one or more processor circuits and are
part of an application for performing operations on a
computing device;

(b) storing at least one portion of the first instruction set
into a first node of a neural network and at least one
portion of the second instruction set into a second node
of the neural network, the neural network comprising a
plurality of portions of instruction sets, wherein the first
instruction set includes a comparative instruction set
whose stored portions can be used for comparisons
with portions of a new instruction set, and the second
instruction set includes an anticipatory instruction set
whose stored portions can be used for anticipation of an
instruction set subsequent to the new instruction set, the
storing of (b) caused by the one or more processor
circuits;

(c) receiving, by the one or more processor circuits via the
interface, the new instruction set, wherein the new
instruction set is executed by the one or more processor
circuits and is part of the application for performing
operations on the computing device;

5

10

15

210

(d) comparing at least one portion of the new instruction
set with at least one portion of the first instruction set
from the neural network, the comparing of (d) per-
formed by the one or more processor circuits;

(e) determining that there is a match between at least a
threshold number of portions of the new instruction set
and at least a threshold number of portions of the first
instruction set from the neural network, the determin-
ing of (e) performed by the one or more processor
circuits; and

() executing the second instruction set from the neural
network by the one or more processor circuits in
response to the determining of (e).

19. The method of claim 18, wherein the computing
device includes a device whose operation is affected at least
in part by the one or more processor circuits.

20. The method of claim 18, wherein the neural network
includes a data structure comprising a plurality of nodes
interconnected by one or more connections.

#* #* #* #* #*

